BestPeer: A Self-Configurable Peer-to-Peer System

Wee Siong Ng Beng Chin Ooi Kian-Lee Tan
Department of Computer Science
National University of Singapore
3 Science Drive 2, Singapore 117543
email: {ooibc,ngws,tankl}@comp.nus.edu.sg

Abstract

In a peer-to-peer (P2P) distributed system, nodes of equivalent capabilities and responsi-
bilities pool their resources together to share information and services. However, most of the
existing P2P systems such as Napster and Gnutella provide a coarse granularity of information
sharing (i.e., file level) that ignore the content of the file. Moreover, a node’s peers are typically
statically defined. In addition, there is no support for nodes that are connected intermittently
with temporary network addresses. In this paper, we present BestPeer, a prototype P2P sys-
tem that we have implemented at the National University of Singapore. BestPeer is unique
in several ways. First, it combines the power of mobile agents into P2P systems to perform
operations at peers’ sites. This facilitates content-based searching easily. Second, it is self-
configurable, i.e., a node can dynamically optimize the set of peers that it can communicate
directly with based on some optimization criterion. By keeping peers that provide most infor-
mation or services in close proximity (i.e, direct communication), the network bandwidth can
be better utilized and system performance can be optimized. Third, BestPeer provides a loca-
tion independent global names lookup server to identify peers with dynamic (or unpredictable)
IP addresses. In this way, several peers can always collaborate (or share resources) even if
their IP addresses may be different at different occasions. We evaluated BestPeer on a cluster
of 32 Pentium II PCs each running a Java-based storage manager. Our experimental results
show that BestPeer provides excellent performance compared to traditional non-configurable
models. Further experimental study reveals its superiority over Gnutella’s protocol.

Keyword: Peer-to-peer, mobile agent, neighbors, dynamic reconfiguration, replacement pol-
icy.

1 Introduction

Peer-to-peer (P2P) technology, also called peer computing, is an emerging paradigm that is now
viewed as a potential technology that could re-architect distributed architectures (e.g., the Inter-
net). It is a network architecture in which all participating computers (or nodes) have equivalent
capabilities and responsibilities. P2P technology enables the direct exchange of resources and
services between nodes by eliminating the need for centralized servers. The distributed nature of
such a design provides exciting opportunities for new killer applications to be developed.

Many domain specific P2P systems have already been deployed. For example, Freenet [4], and
Gnutella [5] enable users to share any digital files (e.g., music files, video, images); Napster [14]
allows sharing of (mp3) music files; ICQ [8] facilitates exchanges of personal messages; Seti@home
[15] makes computing cycles of participants available; and LOCKSS [12] pools storage resources

to archive document collections.

However, most of the existing P2P systems are limited in several ways. First, they provide only
file level sharing (i.e., sharing of the entirety of a file) and lack support for content-based search.
Second, they lack extensibility and flexibility. As such, there is no easy and rapid ways to expend
their applications quickly to fulfil new users needs. Third, a node’s peers are typically statically
defined. Fourth, current P2P systems either rely on a DNS server to resolve domain names or
deploy a centralized server to maintain globally unique names [8]. For the former, since a domain
name server’s entries usually refer to permanent IP addresses, this reduces the participation of
nodes with variable connectivity and temporary network addresses in the activities of peers. For
the latter, the server may become a bottleneck. Moreover, like all centralized approaches, it is
not scalable.

In this paper, we present our solutions to the above problems. First, we integrate mobile
agent and P2P technologies. Since agents can perform operations at the peers’ sites, the network
bandwidth is better utilized. More importantly, agents can be coded to perform a wide variety
of tasks, making it easy to extend the capabilities of a P2P system. For example, while an
agent may search for files based on file names, another may perform a content-based search on
the file. Second, we incorporate a mechanism to dynamically keep promising (or best) peers in
close proximity based on some criterion. For example, peers that are most frequently accessed
are directly communicable while nodes that are less frequently accessed can be reached through
peers. This significantly reduces the response time to queries. Third, we introduce a location
independent global names lookup server (LIGLO) to uniquely recognize nodes whose IP addresses
may change frequently. Thus, a node’s peer whose IP address may be different at different time
remain uniquely recognizable. To avoid the server being a bottleneck, we adopted a distributed
approach where several LIGLO exists in the BestPeer network.

We implemented BestPeer, a prototype P2P system that incorporates all the above features.
To evaluate BestPeer, we propose a systematic methodology for evaluating P2P systems. Our
methodology considers both efficiency and effectiveness (quality fo answers) of P2P systems.
We conducted our experiments on a cluster of 32 Pentium II PCs each running a Java-based
storage manager [6]. Our experimental results show that BestPeer provides excellent performance
compared to traditional non-configurable models. We also evaluated BestPeer against the protocol
of Gnutella. Our study shows that BestPeer is superior over Gnutella.

The rest of this paper is organized as follows. In the next section, we shall present an overview
of the BestPeer network. Section 3 describes several features of BestPeer that was incorporated
to overcome the limitations of existing P2P systems. In Section 4, we report an extensive ex-
perimental study to evaluate BestPeer. Section 5 gives a review of related works, and finally, we

conclude in Section 6 with directions for future work.

2 The BestPeer Network

BestPeer is a generic P2P system designed to serve as a platform on which P2P applications can
be developed easily and efficiently. Figure 1 illustrates a BestPeer network. The network consists
of two types of entities: a large number of computers (nodes), and a relatively fewer number
of location independent global names lookup (LIGLO) servers. Each participating node runs the
BestPeer (Java-based) software and will be able to communicate or share resources with any
other nodes (i.e., peers) in the BestPeer network. Each node comprises two types of data: private
data and sharable data. Nodes can only access peers’ data that are sharable. Using Figure 1
as an example, Peer A can directly connect' to Peer B to obtain its sharable data, while it can
only reach Peer C via Peer B. However, in BestPeer, data are downloaded out-of-network, i.e., a
direct connection between Peer A and Peer C is established in order to perform the data transfer
(without having to go through Peer B). In addition, no messages need to be transmitted from the
peer back to the query initiator along the query path.

We shall delay the discussion on the LIGLO servers to a later section. It suffices to say here
that they are used to uniquely identify nodes whose IP addresses may change as a result of frequent
connection to and disconnection from the BestPeer network. Through the LIGLO servers, a node
knows exactly who its peer is; otherwise, the same peer with a different IP address each time it
joins the network may be considered as a ‘new’ participant. Strictly speaking, if a node does not
care about the identity of its peers, then, it need not use the service of LIGLO servers.

The BestPeer software essentially provides each node with an environment in which (mobile)
agents can reside and perform their tasks. This makes the system highly extensible and powerful.

Now, consider a node (not a registered member of BestPeer) who would like to become a

participant of BestPeer. The process is as follows:

e The node registers with a LIGLO server. This is similar to a user registering to a mail server

in Internet environment.

e The LIGLO server will issue the node with a global and unique identifier, which we shall
refer to as BPID (BestPeer ID). This BPID serves to uniquely recognize this node regardless
of its current IP address. BPID is essentially a (LIGLOID, NodeID) pair where LIGLOID
is the IP address of the LIGLO server and NodelD is a unique id for the node assigned by
the LIGLO server.

e At the same time, the LIGLO server will also send a list of (BPID, IP) pairs that the node

can communicate directly, i.e., direct peers of the node. Here, the ith BPID value is the

!Note that this is only a logical ‘connection’.

r% "UGLO Serverd EI:I

"1 AGLO ServerB

Figure 1: BestPeer network

identifier of the ith peer, and the corresponding IP value is the current IP address of this
peer. We note that since the peer is not obliged to inform LIGLO of its disconnection, the
IP address may not be a valid one. In BestPeer, LIGLO will periodically check the validity

of its registered participants’ IP addresses.

e The node is now a participant of BestPeer and is ready to communicate with any peers

(without going through LIGLO anymore).

On the other hand, for a participating node who wants to rejoin the BestPeer network after

disconnecting, the process is as follows:

e The node will send its IP address to its LIGLO. This allows its LIGLO to update its IP
address if it has changed.

e For each peer of the node, say p, it will send p’s BPID to its (i.e., p) registered LIGLO
server. Recall that p’s registered LIGLO can be obtained from p’s BPID.

e p’s registered LIGLO server will reply with the IP address of p if its is currently connected
to the network; otherwise, it will indicate that p is now offline. This is necessary for the
node to know its peers’ new IP addresses if they have been changed. We note that p is
not obliged to inform its LIGLO server that it will be (or is) disconnected. As such, the

information may not be accurate anyway.

e The node has rejoined the BestPeer network, and is ready to communicate with its peers.

We note that this process is not necessary for a participating node who rejoins the BestPeer
network (except to inform the LIGLO server of its new IP address). It can simply communicate
with its existing peers. Should the IP addresses of some peers be invalid (i.e., they may have
changed their IP addresses or disconnected), then it can simply replace those peers by new peers
that it encounters (based on some criterion).

Once a node is connected to the BestPeer network, it is ready to share its resources as well
as has access to other nodes’ sharable resources. A node essentially broadcasts its query to its
directly connected peers, and its peers will broadcast the message to their peers, and so on. Any
nodes with matching results will respond to the initiating node directly. In BestPeer, there are

two modes in which a node can have access to data from other nodes:

1. In the first mode, nodes with matching answers will return the answers directly. This method
can provide fast answers but may result in overloading and poor bandwidth utilization
especially if significant amount of data are not desirable (e.g., too much overlap, files too

large, etc).

2. In the second mode, nodes with matching answers will only indicate that they have the
information, e.g, by returning the file name, etc. The initiating node will then send a
further message to some, if not all, of these nodes to obtain the desired information. This
mode provide better resource utilization at the expense of a delayed request. Since there is
a delay, and the request is initiated by the source of the query, it is possible that the target

node may have removed the desired content or updated it during the period of delay.

3 Features of BestPeer

In designing BestPeer, we sought to overcome the limitations of existing P2P systems. As such,

BestPeer was designed with several features that distinguish itself:
1. BestPeer combines the power of agent technology and P2P technology into a single system.

2. BestPeer not only facilitates a finer granularity of data sharing where partial content of a

file may be shared, it also shares computational power.

3. BestPeer facilitates dynamic reconfiguration of BestPeer network so that a node is always
directly connected to peers that provide the best service (based on some optimization cri-
terion such as providing the most number of answers or providing answers most of the

time).

4. BestPeer adopts a distributed approach to minimize bottlenecks of servers acting as LIGLO.

In this section, we shall discuss these features in greater details.

3.1 Integration of Mobile Agents and P2P Technologies

BestPeer, to our knowledge, is the first system to integrate two powerful technologies: mo-
bile agents and P2P technologies. While P2P technology provides resource sharing capabilities
amongst nodes, mobile agents technology further extends the functionalities. In particular, since
agents can carry both code and data, they can effectively perform any kind of functions. With
mobile agents, BestPeer not only provides files and raw data, but processed and meaningful in-
formation. For example, in BestPeer, an agent can be sent to a peer with the data file to “digest”
its content and to generate reports for the requester.

In BestPeer, we have implemented our own Java-based agent system instead of using existing
systems (e.g., [11]). Like existing systems, both the agent and its class have to be present for
the agent to resume execution at the destination engine. Thus, if the class is not already at the
destination node, the class has to be transmitted also. For the moment, we have adopted a purely
“code-shipping” strategy where a node will always perform its operation at the destination node
(where the data reside). This is a reasonable approach as it exploits parallelism by enabling all
peers to operate on their data simultaneously; otherwise, the node will become a bottleneck.

More importantly, the use of agents allows BestPeer nodes to collect information (e.g., what
files/content are sharable, statistics, etc.) on the entire BestPeer network, and this can be done
offline. This allows a node to be better equipped to determine who should be its directly connected
peers or who can provide it better service.

Traditionally, mobile search agents perform search operations by moving itself to the site
containing the target information and executing a given task. The agent’s path is pre-defined.
The agent’s programmers have to know where the agent need to go and where the next destination
is after the task at a site is completed. Another problem with the traditional agent approach is that
when a host has more than one directly connected host, the agent’s developers have to decide
which path to follow and then keep track of it. When the network grows more complicated,
searching through the network becomes a nightmare.

BestPeer adopts a different strategy. It solves these problems by providing a simple interface
to search all directly and indirectly connected hosts. An agent’s path is transparent to the agent’s
developer. An agent is sent to all connected host automatically without statically defining the
mobile agent’s path. An agent will be cloned and sent to all connected hosts in parallel. The
process of cloning and forwarding will keep on going until the agent lifetime is expired. The

lifetime of an agent is determined by Time-to-live (TTL) and Hops variables. It is similar to

other packet approach using in networking environment. Once received an incoming agent, if the
agent is not expired (if TTL > 0), remote host will decrease the TTL values of an agent before
sending it to any other host that it is directly connected to. Hops variable will be increased at
the same time too. The redundant use of TTL and Hops together is to enable hosts to drop any

incoming agent that already has a copy on the site.

3.2 Resource Sharing

The notion of sharing is one of the main factors that fueled the growth of the Internet. Most
P2P applications permit sharing of static files such as mp3 audio files, text files and image files.
BestPeer supports sharing of static digital files, active objects that facilitates finer granularity
of data sharing (and hence access control), as well as computational power. For uniformity, all

requests for these resources are performed with agents.

3.2.1 Static files

In BestPeer, any kind of files in digital format can be traded in its entirety including text file,

word document, images, music files, movie files, executable code (programs, software), and so on.

3.2.2 Active Objects

However, in many applications, different users may have different access rights to the content of a
file. While one may be allowed to see the entire content of the file, another may be denied access
to some sensitive information. To support finer granularity of data sharing, BestPeer employs the
concept of an active object. In active objects, two types of elements are defined: data elements
and active elements. A data element describes the content of an object; an active element, on
the other hand, contains the name of an active node that operates on the object to generate the
content. Essentially, an active node is a ‘black box’ (i.e.,an executable code) that receives and
sends messages and interacts with the outside through an interface. Depending on the access right
of the requester, the active node returns the appropriate content. Using the same illustration,
for a person who should be denied sensitive information, the active node will scan the input file,
filter away the sensitive information and return the non-sensitive portion to the requester. It is
the responsibility of the owner to ensure the correctness of the active object (i.e., that sensitive

information should only be accessed by those with the proper access rights).

3.2.3 Computational Power

BestPeer also facilitates sharing of computational power for requests to local files as follows.

The requester sends his/her request for a file together with an algorithm (executable code) that

operates on the file. In other words, the requester performs the filtering task at the provider’s
end! This feature has several advantages. First, it allows filtering to be performed where the
provider’s end does not provide the capability (e.g,, the owner does not provide an active object).
Second, it allows individual requester to filter the content according to what (s)he desires (e.g.,
different requesters may be interested analyze stock data differently). This is in contrast with the
use of active objects where the owner defines what to filter. Third, it facilitates extensibility - new
algorithm or program can be used without affecting other parts of the system! Fourth, existing
non-distributed objects can be easily extended for use by a P2P application by leveraging on the
support provided by BestPeer. Finally, it optimizes network bandwidth utilization as only the
necessary data is transmitted to the requester.

This feature is easily realized by the integration of mobile agents into P2P framework. Agents

that carry code can be dispatched to the data provider.

3.3 Reconfigurable BestPeer Network

Existing P2P systems either adopt a static peer network where a node always has the same
set of peers or allows users to manually determine the peers of a node (that does not change
automatically during runtime).

BestPeer takes a different approach — a node in the BestPeer network can dynamically re-
configure itself by keeping peers that benefit it most (subject to individual node’s definition of
‘most benefit’). The rationale is based on a simple assumption: peers that benefit a node most
for a query are also likely to provide the greatest gain for subsequent queries. Thus, BestPeer
will always try to make a direct connection to these nodes that have highest priority. In this way,
promising peers are first traversed before the less promising ones. Every BestPeer node has its
own control over the maximum number of direct peers it can have. Figure 2 illustrates an exam-
ple of BestPeer’s reconfigurable feature. In Figure 2(a), Peer X is the base node that initiates a
request. Here, Peer X initially has two directly connected peers - Peers A and B. However, only
Peer C and Peer E contain objects that match Peer X’s current query. Peer X can then obtain
the results from Peer E and Peer C directly. At the same time, Peer X determines that Peer C
and Peer E are not its direct peers and they benefit it most. As such, Peer X will keep these
two peers as its directly connected peers (assuming Peer X can keep at least 4 directly connected
peers), resulting in the new network layout shown in Figure 2(b).

Our approach is to keep promising peers as close as possible with no (or little) information
exchange between peers. This is to keep the nodes as autonomous as possible. Moreover, since
nodes can redefine the number of direct peers it would like to have and implement their own

reconfiguration strategies, any tight form of “collaboration” will be complicated to realize and

(a) Before reconfiguration. (b) After reconfiguration.

Figure 2: Example on BestPeer’s Reconfigurable Feature.

maintain. In BestPeer, two default reconfiguration strategies have been designed and deployed.
The first strategy, MaxCount, maximizes the number of objects a node can obtain from its

directly connected peers. It works as follows:

e The node sorts the peers based on the number of answers (or bytes) they returned.? Those
that return more answers are ranked higher, and ties are arbitrarily broken. The assumption

here is that a peer that returns more answers can potentially satisfy future queries.

e The k peers with the highest values are retained as the k directly connected peers, where k

is a system parameter that can be set by a participating node.

We note that this strategy only keeps track of the k directly connected peers, without any knowl-
edge about these peers’ direct peers.

The second strategy, MinHops, implicitly exploits collaboration with peers by minimizing the
number of hops. It requires that peers piggyback with their answers the value of Hops. This will
indicate how far the peers are from the initiator of the request. More importantly, this information
provides an indication on what one can access from one’s indirect peers. The rationale is as follows:
If one can get the answers through one’s not-too-distant peers (with small Hops value), then it
may not be necessary to keep those nodes (that provide the answer) as one’s immediate peers; it

is better to keep nodes that are further away so that all answers can be obtained with the minimal

?We note that many different criteria can be defined. However, their usefulness are domain dependent. We
believe a simple strategy like MaxCount should suffice to cover a wide range of applications.

number of hops. Thus, this strategy simply orders peers based on the number of hops, and pick
those with the larger hops values as the immediate peers. In the event of ties, the one with the

larger number of answers is preferred.

3.4 Location-Independent Global Names Lookup Server

In P2P systems, since nodes can join and leave the network at any time, their IP addresses may be
different each time. As such, under DNS, a participating node is effectively treated as a different
peer whenever its IP address is different. However, for some applications, recognizing a node (even
if the IP address may change each time it is connected to the network) is important. For example,
a set of nodes may agree to be peers to collaborate in performing some tasks. As another example,
a node may particularly be interested in monitoring the updates of a set of peers. These cannot
be realized with DNS alone. To facilitate identification of a single node that may have different
IP addresses at different occasion, each participating node can be assigned a unique BPID, and
a centralized server keeps track of the (BPID,IPaddress) pair whenever a node is connected. In
this way, one can always be certain of its peers and their “new” IP addresses.

BestPeer adopted such an approach - it introduces a Location-Independent Global Names
Lookup Server (LIGLO). LIGLO is a node that has a fixed IP and running Location-Independent
Global Names Lookup Server software. It provides two main functions: generate a BestPeer
Global Identity (BPID) for a peer and maintain peer’s current status, such as the current IP
address and whether the peer is currently online or offline (if this information is available). As
mentioned, BPID is a unique identifier for a peer. Unlike the centralized approach that is used in
systems like ICQ [8], where only one server has the control to maintain the consistency of defined
names, there is no limit on the number of LIGLO servers that can run in one BestPeer network.
Each LIGLO needs only to maintain its members’ name uniquely.

Most of the centralized name servers have to be powerful machines because they have to handle
huge number of requests. On the contrary, a LIGLO sever can limit the number of members that
it will handle based on its capability. When the limit is reached, a LIGLO server can reject any
new inquiry on assigning BPID in order to preserve the efficiency for the existing members. The
node has to seek for another LIGLO for registration. Once a node is registered with the BPID, it
has to inform LIGLO each time it is connected to the BestPeer network by submitting its current
IP to LIGLO. This information can be used by other nodes who may want to uniquely track a
node whose IP addresses may change.

The use of a distributed LIGLO services has the following advantages:

1. No single point failure - LIGLO is a distributed name server; therefore they do not have

any single point failure problem. For example, if a peer A registered with LIGLO A finds

10

that LIGLO A is down, it can still communicate with other peers that it has. In addition,
other peers that registered with other LIGLO server will not be affected at all. This is in
contrast with centralized name server approach (such as ICQ server) where a failure at the

centralized server means that all peers will lose their connection.

2. Unlimited name resources - One of the problems with centralized name server is that all
the names must be uniquely defined. For example, if somebody has registered the domain
name of “www.mydomainname.com”, then that is the one and only one. In LIGLO, on the
other hand, a name is unique only with respect to its own server. Two nodes can register
to two different servers and be assigned the same name as long as this name has never been

previously registered.

3. Scalability. A LIGLO server can be added easily into the network without affecting any of

the existing network environments.

4. Support temporary network addresses as the norm - LIGLO defines its own protocol-specific
addresses, BPID, to replace the dynamic IPs. This BPID is fixed and can be used in place
of dynamic or fixed IPs. Therefore, there is no difference between nodes that have DNS
entries and those that do not have. All of them now have the same ability to hosting data

and net-facing applications locally.

4 A Performance Study

We implemented the BestPeer software with the features discussed in the previous sections. Any
node that installs the BestPeer software and register with a predetermined set of LIGLO servers
can participate in the BestPeer network. In this section, we report an extensive performance study
conducted to evaluate BestPeer. We compare BestPeer against Single-Thread Client/Server (CS)
Architecture and Multi-Thread CS Architecture in different network layout topologies. The basic
difference between CS and P2P is that in a P2P model the interacting processes can be a client,
server or both while in a CS model one process assumes the role of a service provider while the
other assumes the role of a service consumer. Our CS model has some flavors of P2P in that a node
can be both a client and a server. However, like CS model, the server must return its result to the
client - as such the results must be returned along the query path. We also compare BestPeer’s
protocol against Gnutella’s. We studied two versions of BestPeer - a static BestPeer where the
reconfiguration feature is turned off, and a a dynamic BestPeer with the reconfiguration feature
turned on. This allows us to see the benefits of the reconfiguration scheme. We shall denote these
two schemes as BPS and BPR respectively. Before we look at the experiments and findings, we

shall propose a evaluation methodology for P2P systems.

11

4.1 Evaluation Methodology

Any system has to be evaluated based on its efficiency and effectiveness. The former deals with
the performance issue, while the latter deals with the quality of the answers. Unlike existing
distributed systems, there is no clear criteria on how P2P systems should be evaluated. Like
Internet search engine, the answers to queries depend on the peers that are searched, which may
not include every peer in the P2P network. In addition, every query may involve different peers
(since peers change over time)!

For purpose of evaluation, a controlled environment is necessary. We propose that the following
three scenarios be evaluated. First, different schemes should be evaluated based on a fixed set of
nodes. This can be useful for a set of nodes that exploit P2P technology to facilitate collaboration,
i.e., it is essentially a traditional distributed environment where all nodes participate in answering
a query. Here, we can study how different P2P protocols or reconfiguration strategies perform.

Second, in a P2P network, the rate at which answers are returned are important. This is
because the users have no idea of which peers will be providing the answers to his/her queries,
and how many peers will be searched. A long initial waiting time is not likely to be acceptable
to the users.

Third, the quality and quantity of the answers returned are important measures too. A node
may return answers quickly, but it may return only very few answers or answers that are not very
relevant to the query. While quality is based on the semantics of the query, quantity of answers

is easy to obtain and use as a performance metrics.

4.2 Experimental Setup

The experimental environment consists of 32 PCs with Intel Pentium 200MHz processor and
64M of RAM. Nine of the PC running on WinNT4.0 operating system, 22 running on Window98
and 1 running on Window Millennium. The physical network layout is shown in Figure 3. The
experiments were conducted when the machines and the network were fully dedicated and the
results presented correspond to the average of at least three different executions. The variance
across different executions was not significant.

In the experiment, there is a set of nodes in the network and each of these nodes has a local
copy of StorM object [2]. StorM is a 100% Java persistent storage manager. Data to be shared
are stored in StorM. For our study, each node stores 1000 objects in StorM to be shared, and
these objects are accessible via StorM’s API. For simplicity, we have set all objects to be of the
same size - 1K bytes. Moreover, there is no replication, i.e., there is only one copy of an object
in the BestPeer network used in our study.

We implemented a StorM agent, that takes as input a query from the user (in the form

12

Peer FPeer pggy Peer Feer pegy

Figure 3: Experimental environment.

of a keyword), and then search through the entire BestPeer network. The goal is to find the
occurrences of objects in StorM of each node that match the query. The whole search process of

StorM agent operates as follows:
1. Send a StorM agent. The base node sends an agent to its directly connnected peers.

2. Executing the StorM agent. All the peers that receive the incoming agent will prepares a

new thread of execution for the agent.

3. Interact with StorM object. The agent makes a comparison for each object stored in the
Shared-StorM database with its query. All the matched results are stored in a temporally

array.
4. Send the result back. The result is sent back to the base node.

We also incorporated the GZIP data-compression algorithm in the current implementation of
BestPeer. All the agent and messages used for communications between every nodes or peers are in
a compressed data representation. Compression and un-compression are performed automatically

by BestPeer platform and are transparent to the software developers.

13

4.3 On Different Network Topology

We first begin by evaluating BestPeer on different logical network topology - namely the Star,
Line and Tree structures as shown in Figure 4. In the Star structure (see Figure 4(a)), the central
node is the base node that initiates the search query, and all other nodes are directly connected
to the base node. In the Tree structure (see Figure 4(b)), the root node is the base node that
initiates the search request. Each node in the Tree structure, except for the leaf nodes, has k
directly connected peers. In the Line structure (see Figure 4(c)), all nodes have two peers, except
for the end nodes which have only one peer. Here, we used the left most node as the base node

that initiates the search query.

Feer

(a) Star topology.

|
Peer Feer Peerz Peerd Peerd Peers

(c) Line topology.
Figure 4: Different network topologies used in the experiment.

In this experiment, we vary the number of nodes from 1 to 32. We run each scheme several
times and used the completion time as the performance metrics. The completion time is taken to

be the time when all answers from all nodes have been received. Figure 5 shows the results.

On Star Topology

Figure 5(a) shows the results for Star topology. First, we note that Static BestPeer (BPS)

and Reconfigurable BestPeer (BPR) show similar performance. This is because under the Star

14

Completion time (ms)

1.2e+06 - 100000
BPS —&—
1le+06 - BPSBPR —=— BPR -
SCS % CS & -
MCS ---&-- 90000 |+
800000 &
E
(0]
v £
600000 |- * S 80000 |
[=%
£
Q
400000 - ©
* 70000
200000
‘><
- = B
0 1 1 1 1 1 1 1 J 60000 1 1 1
0 4 8 12 16 20 24 28 32 0 1 2 3
Number of nodes Number of levels
(a) Star topology. (b) Tree topology.
100000
B
BPS —&— /
BPR % .
CS o - ot
90000 |- o

Completion time (ms)

60000

12

16

20

24

28 32

Number of nodes

(c) Line topology.

Figure 5: On network topologies.

15

topology, there is no difference between the two schemes. As shown in the results, when we
increase the size of the network, the Single-Thread CS (denoted SCS) performs worse than the
other models. This is because SCS can only handle one connection at any moment - it has to
complete the first operation before switching to the second node for another operation. We also
note that both MCS and BP-based schemes outperform SCS significantly. This is so because these
schemes exploit parallelism by simultaneously handling multiple connections and transmitting
multiple queries to all peers. We also observe that MCS is slightly better than BPS/BPR but
the gain is not significant enough to be visible. We shall explain this further when we look at the
results for Tree and Line topologies. Since SCS performs poorly, we shall not discussed it further.

For all subsequent experiments, we shall use MCS only, and for simplicity, we shall denote it as

CS.

On Tree Topology

Figure 5(b) shows the result on Tree topology. We note that in this experiment, we used only 48
nodes instead of 63 for level 5. We make several interesting observations. First, we note that CS
can outperform BPS and BPR (as noted in the earlier experiment). This is expected as BPS and
BPR are essentially code-shipping strategies - not only do they need to transmit the code/agent to
the peers, they must also incur the overhead of reconstructing the agent at the peer site.? On the
other hand, under CS, it is simply transmitting a query, and the algorithm at the server performs
the task there. As a result, when the number of levels is 1 (which means all peers are directly
connected as in the Star network), CS is superior. However, as the number of levels increases,
CS begans to degenerate. This is because CS requires the data to be returned along the path at
which the request is sent. For BPS and BPR, the answers are returned directly back to the query
node.

Comparing BPR and BPS, it is clear that BPR outperforms BPS by virtue of the fact that
BPR is able to reconfigure itself resulting in a more optimal network structure. BPS, on the other

hand, must always pass through the same set of nodes regardless of their service quality.

On Line Topology

The results on Line topology (see Figure 5(c)) show similar behavior to that of the Star structure.
Essentially, the various schemes have the same relative performance for the same results as that

for Tree topology, i.e., BPR is the best and BPR outperforms CS for most cases (except when

3There are two possible implementations for CS. In the first implementation, a server who acts as a client will
consolidate all answers from its servers before returning the answers to its clients. In the second implementation,
a server acting as a client will return any answers that its servers may return through it immediately. We adopted
the second implementation in this work.

16

the number of nodes is very small).

4.4 On Initial Response Time

In this experiment, we evaluate the performance of BPR, BPS and CS on the rate at which
answers are returned. The number of nodes is fixed at 32, and we used the Tree topology. A
search query is issued four times, and the average time at which nodes respond are noted. Figure 6
shows the results of the experiment. In the figure, the point (K, T) indicates that K nodes have
responded after T time units. We note that it is possible that under different schemes, different
nodes respond at different time and with different answers. We shall defer this discussion to the
next experiment.

As shown in the figure, BPR is still the best scheme, outperforming BPS by virtue of its ability
to reconfigure the network. It is able to reach out to more promising nodes directly - after each
query, BPR will reconfigure itself so that the next query can be directed to the more promising
nodes first. We note that, except for the first few nodes, CS returns answers much slower than

BPR/BPS - as it only returns answers along the path that the query has been transmitted.

84000 -
80000 BPS —&— =z
76000 |-

72000

Completion time (ms)

68000

64000

60000 I I I I I I I)
0 4 8 12 16 20 24 28 32

Number of peers completed

Figure 6: Rate at which answers are returned.

4.5 On Quantity of Answers

Having a fast initial response time is not good enough. It is possible that nodes that return
answers first provide very few answers. For the earlier experiments that study the initial response

time, we also keep track of the number of answers that are provided by each node. Figure 7

17

shows a plot of the result. As shown, it is clear that CS returns the first few answers much faster
than BPS and BPR. This is expected since the first few directly connected nodes that receive the
query can return their answers immediately. For BPS/BPR, the overhead of the code-shipping
strategy results in a longer initial response time performance. However, as more answers are
returned, BPS/BPR are superior over CS, demonstrating the superiority of P2P technologies
over traditional CS models. We also note that BPR is generally better than BPS.

84000 84000
BPS e BPS e -
BPR % g BPR - &

80000 | CS --&-- B 80000 | CS --&- Jui

o @
£ 76000 £ 76000
[(2
T T
: :
c 72000 c 72000
8 je
Qo e}
o [=]
e 2
(] Q
E 68000 E 68000
[[

64000 64000 |
60000 1 1 1 1 1 1 1 1 1 J 60000 1 1 1 1 1 1 1 1 1 J
0 60 120 180 240 300 360 420 480 540 600 0 60 120 180 240 300 360 420 480 540 600
Number of answers Number of answers
(a) First search query. (b) Last search query.

Figure 7: Number of answers returned.

4.6 Comparison of BestPeer and Gnutella

FURI [1] is a Gnutella protocol-compatible Java program that can participate in the Gnutella
network. It is a full version program with a GUI interface that can perform most of the tasks of
a Gnutella servant. In this experiment, we shall compare Gnutella with BPR, (denoted BP here).
We note that Gnutella essentially adopts a similar approach as BPS, i.e., a node has a fixed set of
peers and there is no dynamic adjustment of the set of peers one is directly connected to. In this
experiment, each node has 1000 sharable text files (since the source we obtained from from [1]
can only evaluate keyword search on text files). We also restrict the answers to come from only
a few nodes. The completion time is thus determined by the time when all the answers arrived.
We repeated a single search query four times during an experiment, and several experiments were

conducted to obtain an average result. Figure 8 shows the results of the experiments.

18

In Figure 8(a), each node has up to 8 directly connected peers, and show the results for each
run of a query. We observe that Gnutella is essentially not affected by the number of times the
query is run since it employs the same search path each time. On the other hand, we find that for
BP, the completion time fo the first search is much higher the other searches for the same query.
This is because for the first search, BP also need to route through the entire intermediate peers
before reaching nodes with the answers. For subsequent searches, BP’s reconfiguration feature
ensures that it can directly connect to these nodes with answers. As such, for subsequent searches,
the response time is significantly reduced. We also observe that BP outperforms Gnutella in all
runs. This is because, in this experiment, we do not return the data files as output as Gnutella
will not return results directly - it simply sends the list of files that matches the query. Therefore,
while BP and Gnutella return results out-of-network, this feature is not used in the experiment. In
addition, Gnutella requires messages to be sent to the peers along the path of the query traversal,
i.e., the list of files have to be transmitted through the query traversal path! On the other hand,
under BP, nodes with matching files will send the information direclty back to the initiating node.

From Figure 8(b), we see the effect of the number of peers over 4 queries each time. As the
number of directly connected peers increases, BP remains superior. While Gnutella’s performance
also improves with more peers, traversing the same path each time and returning answers along

the query path lead to its poorer performance.

6 12 ~
A\A\A/A Gnutella —=—
BP -

10

UE) 4 « g 8
g - g
X ka3
Q Q

E E 6}
< =
k=) S
E * * * §
Q. Q.

521 oGnuela —a— § af
© BP - o

2 F

0 Il J 0 Il Il Il Il Il J
0 2 4 0 2 4 6 8 10 12
Number of times aquery isissued Number of direct peers
(a) Number of peers = 8. (b) Effect of number of peers.

Figure 8: BestPeer vs Gnutella.

19

5 Related Works

The Concordia platform [13, 3] developed by Mitsubishi Electric provides support for Java-based
mobile agents. Agent’s mobility is achieved via Java’s serialization and class loading mechanisms.
Each agent object is associated with a separate Itinerary object, which specifies the agent’s mi-
gration path (using DNS hostnames) and the methods to be executed at each host. In [9], the
Aglets environment allowed the creation of a group of agents that can work cooperatively to solve
a complex task. In [10], Ajanta, a Java-based system for support agent mobility was developed
which also make use of Java’s serialization for state capture. Agent-code is loaded on demand,
from an agent-specified server.

The above agent-based technology provides support for agent collaboration and communica-
tion but lack support for peer-to-peer technology. Development of P2P applications based on
these platforms would require a longer development effort, which would be costly.

As mentioned, there are already many P2P systems [4, 5, 14, 8, 15, 12]. However, these
systems cannot be easily extended to meet users changing needs.

More recently, the database community has begun to exploit P2P technologies for database
applications [7, 16]. In [7], data placement issues were addressed. In [16], the class of “hybrid”
P2P systems where some functionality is still centralized is studied. In particular, an analytical
model to describe the system performance is developed, and validated against actual hybrid P2P
systems. Different architectures such as chained architecture, full replication architecture, hash

architecture and unchained architecture were compared.

6 Conclusion

In this paper, we have presented a P2P system called BestPeer that can be used to support a
wide range of applications. BestPeer has several nice features. First, because it integrates agent
and P2P technologies, it provides easy extensibility to existing systems. Second, it provides a
mechanism to reconfigure a nodes’ peers based on some optimization criterion. Third, it supports
distributed LIGLO servers to maintain some crucial information of BestPeer participants. Our
extensive experimental studies show that BestPeer is a promising system for distributed process-
ing. We plan to extend this work in several directions. First, our current implementation provides
no optimization schemes - basically, a node will always send its agent to the destination node to
process the data there. We plan to make a node more intelligent by allowing it to determine at
runtime which strategy to adopt - code-shipping or data-shipping. Second, we plan to further
study how placement of data and replication can be exploited to improve performance. Finally,

the issue of finding a consistent data set has to be addressed.

20

Acknowledgements

Wee Siong Ng and Kian-Lee Tan are partially supported by the NSTB/MOE research grant
RP960668.

References

[

]

—

FURL In http://www.jps.net/williamw/furi.

S. Bressan, C.L. Goh, B.C. Ooi, and K.L. Tan. Supporting extensible buffer replacement strategies in
database systems. In SIGMOD 1999, 1999.

A. Castillo, M. Kawaguchi, N. Paciorek, and D. Wong. Concordia as enabling technology for cooper-
ative information gathering. In Proceedings of the 31th Annual Hawaii International Conference on
System Sciences 1998 (HICSS31), 1998.

Freenet Home Page. hitp://freenet.sourceforge.com/.
Gnutella Development Home Page. http://gnutella.wego.com/.

C. L. Goh, S. Bressan, B. C. Ooi, and M. Anirban. Storm: A 100% java persistent storage manager.
In OOPSLA Workshop on Java and Object, 1999.

S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu. What can databases do for peer-to-peer. In
WebDB, 2001.

ICQ Home Page. http://www.icg.com/.

G. Karjoth, D.B. Lange, and M. Oshima. A security model for aglets. IEEE Internet Computing,
1(4), 1997.

N. Karnik and A. Tripathi. Agent server architecture for the ajanta mbile-agent systems. In Interna-
tional Conference on Parallel and Distributed Processing Techniques and Applications, 1998.

D. Lange and M. Oshima. Programming and Deploying Java Mobile Agents with Aglets. Addison-
Wesley, 1998.

LOCKSS Home Page. hitp://lockss.stanford.edu/.

Mitsubishi Electric. Concordia: An infrastructure for collaborating mobile agents. In Proceedings of
the 1st International Workshop on Mobile Agents (MA ’97), April 1997.

Napster Home Page. hitp://www.napster.com/.
SETI@home Home Page. http://setiathome.ssl.berkely.edu/.

[16] B. Yang and H. Garcia-Molina. Comparing hybrid peer-to-peer systems. In VLDB’2001, 2001.

21

