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ABSTRACT
As peer-to-peer (P2P) networks become more familiar to the
database community, intense interest has built up in using
their scalability and resilience properties to scale database
applications. Indexing methods are adapted on top of P2P
networks and querying methods are developed to handle
the data distribution on different nodes. These procedures
largely depend on how nodes are connected to each other. So
far, limited attempts have been made to compare all these
systems in a generalized framework. This is because the
systems are quite different from each other, and there are
so many of them that brute force comparison is practically
impossible. Fortunately, it has recently been observed that
a large subset of the most important P2P networks share
a common algebraic and combinatorial base, in the form of
Cayley graphs.

The specific requirements of Peer-based Data Manage-
ment Systems (PDMS), such as query completeness, range
queries, load balancing, communication overhead, and scala-
bility are strongly related to the properties of the underlying
graphs, and naturally, some graphs are better than others.
We conduct a comprehensive graph-theoretic analysis from
the point of view of PDMS and identify the necessary con-
ditions for a graph to be considered a potential network
structure for a PDMS. In so doing, we provide a basis for
the future development of such networks. We complement
our analytical study with extensive experimental results and
identify three measures that provide significant information
about the potential of a [Cayley] graph to support the re-
quirements of a PDMS.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
systems—Fault tolerance; E.1 [Data]: Data Structures—
Graphs and networks
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1. INTRODUCTION
A large number of peer-to-peer (P2P) networks have been

introduced in the literature since their popular advent in
the late 1990s. In particular, structured P2P overlays have
gained much attention since 2001. They are noted mainly for
their theoretical properties such as balancing of communi-
cation, storage and processing load, and elegance of design.
While unstructured P2P networks may have received much
public attention for their file-sharing utility, they are not
suitable for most other applications as they do not provide
guarantees of any kind. In particular, existing data may not
always be retrievable in unstructured P2P networks even
in optimal operating conditions. This renders the networks
largely unusable for distributed databases, or any other ap-
plication where the existence or non-existence of a piece of
information makes an essential and otherwise unpredictable
difference in the result of a query.

In the context of structured overlays, sensitivity to tempo-
rary node absence has also not been fully addressed. Though
there has been considerable interest in the database commu-
nity for P2P systems [1, 14, 16, 27] (a result of which has
been the creation of a new acronym: PDMS - Peer-based
Data Management System), most works assume that node
failures are dealt with at the lower levels of the systems’
architectures via expensive periodic network stabilizations.
Note for instance that PDMS research papers often describe
node failures as being outside their scope and focus on data
distribution and query processing.

We have to take a step back and look at the underlying
structure and, in particular, at its potential of tolerating
node failures. Function of this tolerance, more or less costly
compensation measures will need to be taken in order to
guarantee a proper functionality. These measures introduce
overhead, and based on our expectation of node failures, we
need, at design time, to make a decision on what kind of
structure to use for the underlying interconnection network.
In this context, our work provides an analytical basis, cou-
pled with a simulation environment, by which the designer
of a PDMS can choose the underlying network. What makes
CAN [30] better than Chord[33], or BATON [15] better than
CAN, or more generally, one structure better than another?
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Figure 1: Maximal cardinality of instances of some
well-known networks

And what does better mean? These are the questions that
we seek to answer now.

There is a long stream of proposals on structured P2P
networks. Chord [33], CAN [30], BATON [15], SkipNet [12],
Viceroy [25], HyperCuP [31] and Overcast [17] form a rep-
resentative sample of the variety that exists. A good survey
may be found in [24].

The various structured P2P networks may be grouped into
two types: those having small routing tables but large rout-
ing paths, and those having small routing paths but large
routing tables. Two extremes are BATON* [16] and Cycloid
[32]. While the former increases its maximum degree expo-
nentially but keeps the diameter logarithmic with a large
base, the latter maintains a constant maximum degree, but
increases its diameter polynomially. The balance between
the number of neighbors and the maximum path between
two nodes is known as the (degree, diameter)-problem in
graph theory. In Figure 1 we plot the order (maximum
number of nodes) of some small instances of well-known P2P
networks, to show how each overlay increases its order either
by an increased diameter or by an increased degree. We also
plot the order of the largest known graph for each (degree,
diameter) pair. Interestingly, this reveals much space for
improvement: known graphs are able to hold many more
nodes using the same degree and diameter as the overlays
exemplified in this figure. Therefore, we conjecture that not
all graphs are good models for PDMS and we seek to iden-
tify a set of measures to help us decide which is a potentially
good structure and which is not.

Structured overlays also differ as a consequence of their
intended usage, and correspondingly, of the algorithms im-
plemented on top of them. However, this may be seen as
just a particular way to label the nodes, and given an ap-
propriate re-labeling function, the algorithms can be applied
on top of each overlay. The existence of such a re-labeling
function depends only on the type of structure that is used
to connect the nodes. We will see that even apparently very
different network overlays, such as BATON (based on a tree
structure) and Chord (based on a ring structure) can be very
similar if an appropriate relabeling function is found.

Recently, [29] and [28] have observed that most structured
overlay networks have Cayley graphs as their static archi-
tecture. These abstract algebra graphs have been studied in
the late 1980s and early 1990s in the context of parallel com-

puters (processor interconnection networks), but properties
that are considered important in that context, like planarity
- the possibility to arrange the nodes without intersecting
the edges, are not relevant in P2P overlays. We propose a
new analysis for a better understanding of a graph’s poten-
tial to constitute the basis of the next PDMS. Additionally,
we address the proposal of [29] and [28] to use the Star
graph as underlying structure and analyze it from the point
of view of a PDMS.

This work is part of a larger, comprehensive project un-
der development at the School of Computing, NUS, enti-
tled BestPeer. This framework provides a broad range of
querying and searching facilities over various types of data
sources and is build on a flexible P2P platform that can
switch smoothly between structured and unstructured over-
lays.

1.1 Motivation
It is important to understand the extent to which the over-

lay network is capable of handling faults. This is particularly
true for systems that deal with aggregate queries, and even
if the assumption is that an optimal routing scheme is im-
plemented. For instance, in defining their aggregate query
semantic, Bawa et al. [4] assume that the failure of a node
can be compensated with an update in the neighborhood.
While this may be true in most cases, there may also be sit-
uations where the quasi-simultaneous failure of a relatively
small sets of nodes could divide the network in two disjoint
subnetworks. Such a situation will trigger a massive update
process in all the nodes of the original network. A system
designer will need to consider this problem.

The same problem appears in [19], where the authors deal
with data mappings on P2P networks. Temporarily unavail-
able nodes may in this case result in a lack of constraints,
and consequently, the deduction of false mappings.

More recently, the database community has been inter-
ested in providing quality guarantees to systems developed
on top of P2P networks. In [22] and later in [8] and [7],
the authors argue for correctness, availability and load bal-
ancing guarantees for data and query distribution on P2P
networks. In the meantime, they developed their techniques
“in the context of a general P2P indexing framework that
can be instantiated with most P2P index structures in the
literature”. As we will show in this paper, interconnection
networks have significantly different fault tolerances. There-
fore, before guaranteeing correctness or load balancing, it is
important to take a closer look at whether the network even
allows a maximal connectivity in the presence of failures.

Our preliminary analysis leads us to the observation that
many existing PDMS are mappable to Cayley graphs de-
spite their apparent differences. For instance, we have taken
a close look at BATON [15], a recently proposed tree-based
PDMS capable of answering both equality and range queries.
We have observed that, provided the addition of one node
(regardless of the size of the tree), there exists a mapping be-
tween the tree and the chordal ring representations. In par-
ticular, if directed, this chordal ring representation forms the
well-known Chord network [33]. In Figure 2, it’s not difficult
to observe that the function Υh : {1, ..., h}× {1, ..., 2l−1} →
{1, ..., 2h − 1}, Υh((l, j)) = 2h−l(2j − 1) represents an iso-
morphism between the two graphs.

The existence of such a mapping indicates that the study
of the subclass of structured P2P networks based on Cayley
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Figure 2: The BATON structure drawn as in [23]
(a.) and as the Cayley graph representing Chord
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graphs provides useful insights for a much larger array of
networks than what may be initially expected.

1.2 Contributions
We systematically analyze a representative subset of the

existing P2P networks used in PDMS and show the neces-
sary conditions for the underlying graph structures, in terms
of common measures of graph optimality. Each such mea-
sure has a direct effect on one of the properties of a PDMS,
as indicated in Figure 3.

In particular, we are interested in query completeness,
which we define here as the amount of relevant informa-
tion present in the live nodes of the network when a query
is issued. This is obviously determined by the connectivity
of the graph underlying the network, by fault tolerance, and
as we will see, by node bisection width. The main idea is to
consider a network as being better if the failure of a node or
a small set of nodes does not create a “cone of shadow”, i.e.,
it does not make another set of nodes unavailable.

Our contributions are as follows:

• We improve upon the Cayley graph models presented
previously for P2P networks, correcting two existing
misrepresentations in the models of the CAN and Viceroy
networks. We do this in Section 4.

• We re-examine the “basic” set of graph-theoretic mea-

sures which have been previously considered in the
literature and show that they provide little and mis-
leading decision support for PDMS system designers
in Section 5:

Node degree: Refers to the number of neighbors that
each peer maintains. A higher value increases re-
liability but also maintenance cost.

Vertex transitivity: Expresses the symmetry of the
network. If a graph is vertex transitive, then any
node can be equally loaded. A perfect counter-
example of this property is a tree – the root will
always be overloaded.

Edge transitivity: Expresses the balancing of the load
on each edge and is assumed to correspond to
communication bandwidth balancing.

Optimal fault tolerance: Indicates that the num-
ber of nodes that can fail without segmenting the
network into two disjoint sub-networks is mini-
mal. Though apparently useful, we will show that
for P2P networks, this measure is insufficiently in-
formative.

• Having observed that previously used graph measures
are not sufficiently informative for P2P networks, in
Section 6 we provide an in-depth analysis of the over-
lays based on:

Diameter resilience: Characterizes the effects of node
failure on the maximum distance between any two
nodes.

Bisection width: Refers to the number of nodes or
edges that need to be removed to segment the
network into two subnetworks of (almost) equal
size.

Hierarchy: Characterizes the capacity of a network
overlay to expand its ID space.

Hamiltonicity: The existence or absence of a way to
traverse all the nodes in an orderly fashion af-
fects the fault tolerance of the network, the rout-
ing method and the possibility of answering range
queries efficiently.

• Along with the analysis of the properties of each net-
work, we perform extensive simulation experiments in
Section 7:

– We provide a plug-and-play network simulator
based on Cayley graphs, with which we have im-
plemented and tested 25 different network archi-
tectures.

– We test network performance in terms of query
success rates and maximum path length in the
context of an optimal routing method which al-
ways finds a path if one exists.

– We implement routing protocols described in the
original papers of Cycloid [32], Viceroy [25], Hy-
perCuP [31] and Chord [33] and compare them
with their estimated performance based on the
default graph routing method.



– We show the flexibility of our simulator by im-
plementing a non-Cayley network, BATON, and
compare its performance against the execution on
PlanetLab of the real network.

In Section 8, we conclude with the set of measures that
need to be considered when choosing or designing a partic-
ular interconnection strategy for a PDMS.

2. TERMINOLOGY AND NOTATION
We provide a set of basic definitions from graph and group

theory to facilitate discussions in the sections that follow.

Definition 1. A digraph G = (VG, EG) is a set of ver-
tices VG and a set EG of directed edges (or arcs) (u, v) ∈
VG × VG.

Throughout this paper we will consider the graphs to be
directed graphs (digraphs) because we are counting entries
in the routing tables, and for each undirected edge, we have
two such entries. It is thus natural to consider an undirected
edge as two directed edges. Where obvious, we will avoid
using the index G.

Definition 2. The degree of a node v ∈ V , denoted δ(v),
is the number of outgoing edges from v.

Definition 3. A digraph G is strongly connected if there
exists a path between any two vertices. The connectivity
number of the graph G (denoted by λ) is the minimal number
of nodes whose removal disconnects the graph. Then, the
fault tolerance of a graph is λ − 1.

Definition 4. A graph G is called optimally fault toler-
ant if its connectivity number is equal to the smallest degree
of any of its nodes: λ = minv {δ(v)| v ∈ V }.

Now, some basic abstract algebra definitions:

Definition 5. A group G = (X, ∗) is a set of elements
X together with a binary operation ∗ : X ×X → X with the
following properties:

closure: ∀x, y ∈ X : x ∗ y ∈ X
associativity: ∀x, y, z ∈ X : x ∗ (y ∗ z) = (x ∗ y) ∗ z
identity: ∃e ∈ Xs.t.∀x ∈ X : x ∗ e = e ∗ x = x
inverse: ∀x ∈ X,∃y ∈ Xs.t.x ∗ y = y ∗ x = e. (Not. x−1 =

y)

By an abuse of notation, we will often write G as the set of
elements of the group. We will refer to the binary operation
of a generic group as multiplication.

Definition 6. A subset S ⊂ G is called a generating set
of G if every element g ∈ G can be written as the multiplica-
tion of a finite set of elements from S. S is called a minimal
generating set if ∀k ∈ S, S\{k} is not a generating set.

A generating set S is symmetric if it is closed under in-
verses: s ∈ S ⇒ s−1 ∈ S.

Finally, the definition of a Cayley graph (Group graph):

Definition 7. A Cayley graph Cay(G,S) given by a group
G and a subset S ⊂ G is the graph whose vertices are the
elements of the group and there exists an arc between any
two vertices u, v if and only if there exists an element s ∈ S
such that v = u ∗ s. Where useful, we will label this arc with
the element s.

3. RELATED WORK
Assessing the quality of P2P networks is a problem that

has received considerable attention, mostly in comparing
some new proposal with an existing one. Virtually all newly
introduced P2P networks have such a characterization, show-
ing improvement against previous solutions.

Still, it remains difficult for a system designer to choose
among the various structures. One solution is, of course, to
take all the networks, or as many as possible, and run them
with the same data to see which one performs best according
to some specific metric of interest. A recent such approach
is that of [21]. The problem with such a test is that one has
to implement, or at least obtain, the different networks and
run them with the same input. This option is of little use
to system designers as they need to make a decision before
implementation.

Another solution is to provide a general model that unites
all the available architectures. One of the first such ap-
proaches comes from the developers of Chord: In [9], they
proposed a unified API for structured P2P overlays. Their
work divides a P2P application into tiers, where tier 0 is
limited to the basic key-based routing API (KBR); tier 1
implements abstractions such as DHT, multicast or DOLR
(Decentralized Object Location and Routing); and eventual
higher tiers, not discussed there, implement applications on
top of the two basic levels. The authors argued that their
set of API methods can be easily implemented on four types
of structured overlay networks but did not provide further
results in that direction. Another recent example in this cat-
egory is [2]. Though the authors of [2] also do not present a
real implementation, they take an even more ambitious ap-
proach to modeling P2P overlays by considering both struc-
tured and unstructured overlays in their work. Even without
the benefit of an implementation, these works are a motivat-
ing exercise, arguing for the case of a unifying framework.
The reason for which these two proposals lack an implemen-
tation is, we suspect, that they still require a fair amount
of programming to launch a new system. Moreover, they
may be too general to provide real feedback on the features
that have a particular beneficial or detrimental effect on the
perfomance.

In parallel to the above systems, works such as that of
Ratajczak and Hellerstein [29], Qu et al. [28] or Gummadi
et al. [11], successfully argue for an analysis of the under-
lying static structure of the P2P overlays before looking at
the algorithms implemented on top of it to deal with load
balancing and churn. First, [11] presents an empirical anal-
ysis based on the simulations of various types of networks
and concludes that routing geometry is fundamental and
that flexibility is a key parameter. They also suggest that
the ring (here by ring they actually mean the chordal ring
graph, i.e., a ring plus a set of chords connecting different
sections of the ring) is a powerful candidate for the univer-
sal network, on top of which most routing and balancing
algorithms may be implemented. Their analysis still lacks a
cohesive analytical framework; even in the case of the ring,
the results do not take into account that the arrangement
of chords of the ring has a significant effect on the graph’s
properties.

The empirical results of [11] call for an analytical study to
identify the graph theoretic properties of the networks. Such
a study was initiated in [29] and independently extended in
[28]. Both works identify Cayley graphs as the common



underlying structure of the most popular P2P overlays. Ad-
ditionally, they suggest the possibility of defining new net-
works based on so-far unexplored Cayley graphs, such as
the star graph or the pancake graph. A useful continuation
is the implementation of these proposals, and, maybe more
importantly, the identification of significant measures to dif-
ferentiate existing P2P overlays. With regards to this last
aspect, they observe that all structured P2P networks are
very similar in terms of vertex and edge transitivity, hier-
archy, fault tolerance and connectivity, and hamiltonicity.
We are thus left with the impression that, for instance, the
hypercube, which is substantially similar in all these metrics
with the Chord ring, has been somehow miss-favored. We
will show in this paper that this is not the case.

Finally, in this work, we will make multiple references
to results in graph theory, parallel algorithms and architec-
tures. Where necessary, explicit citations will be used, but
otherwise, the reader is directed to a graduate level textbook
such as [20].

4. STRUCTURED OVERLAYS AS CAYLEY
GRAPHS

We begin by re-examining the groups and generating sets
that define some of the most popular P2P structured over-
lays and then continue by observing their common proper-
ties. In this sense, our approach differs from existing works
in that we do not only try to create a new overlay based
on Cayley graph properties, but also discover Cayley graph
properties from existing overlays. This will allow us to iden-
tify a sub-class of Cayley graphs that have a good potential
as P2P overlays, based on the experience accumulated in the
field over the past half decade.

4.1 Cayley graph definitions
We start with the definition of one of the most popular

P2P overlays, the Chord:

Proposition 1. Consider G to be the group Z2m (the set
of positive integers smaller than 2m) with binary operation
+(mod2m) and generating set S =

˘

2i, i = 0, ..., m − 1
¯

.
Then Cay(G,S) is a chordal ring as in the Chord [33] over-
lay.

Observe that if we close the generating set to inverses by
addition of the inverse of each generator to S, then Cay(G,S)
is an undirected chordal ring as in the SkipNet [12] overlay.

A small change to the definition of the Cayley graph defin-
ing the Chord gives us the hypercube:

Proposition 2. Consider G to be the group Zn
2 (the set

of binary strings of length n) with binary operation ⊕ (com-
ponent wise addition modulo 2) and generating set S =
{1i, i = 1, ..., n} (the set of elements with exactly one 1).
Then Cay(G, S) is a hypercube.

In this case, the set S is closed to inverses (every element
is its own inverse) and consequently the hypercube is undi-
rected.

We continue the modifications and from the definition of
the hypercube we define the d-torus that forms the CAN
overlay:

Proposition 3. Consider G to be the group Zd·c
2 . Here,

c is the maximum number of times an area can be split and

d is the dimensionality of the CAN overlay (usually taken to
be 2). Note how this can be viewed either as Zd

2c , or as Zc

2d

as in CAN. It is simpler to use the Zd
2c version with binary

operation ⊕ (component wise addition 2c) and generating
set S = {1i, i = 1...d} ∪ {−1i, i = 1...d}. Then, provided a
local relabeling of nodes is performed by changing the basis
from c to d, the Cayley graph of this group is precisely the
CAN structured overlay graph.

This definition improves upon earlier ones in [28, 29] be-
cause it eliminates artificial distinctions between the allow-
able number of splits in each dimension. Previous definitions
also confused the dimensionality of CAN with the dimen-
sionality of the identifier space (note that CAN increases
its identifiers based on the number of splits, not the dimen-
sionality, which is fixed apriori). We go on to more com-
plicated Cayley graphs: the cube-connected cycles (CCC(n))
and the Butterfly (BF(n)) networks. For the first one, we
have the Cycloid [32] P2P overlay network, while for the
second Viceroy [25] is frequently cited as an example. Both
have O(1) routing tables and a logarithmic size network di-
ameter. Their Cayley graphs are very related: They are
defined on the same group and only have different generat-
ing sets, as shown in the next proposition.

Proposition 4. Consider G to be the group formed by
the cartesian product Zn ×Zn

2 with binary operation ∗ given
by: (l, x) ∗ (l′, x′) =

`

l + l′(mod n), x ⊕ σl(x′)
´

, where σℓ is
a circular permutation of length ℓ. Then, considering the
generating set S = {(1, 00...0), (0, 10...0), (−1, 00...0)}, we
have Cay(G, S) is CCC(n).

Using the same group, consider S′ = {(1, 00...0), (1, 10...0),
(−1, 00...0), (−1, 10...0)}. Then we have Cay(G, S′) is BF(n)

However, as shown in Figure 4, the underlying network
used in Viceroy is not the canonical definition of Butterfly.
We will denote the Viceroy network as VBF (n) to differenti-
ate it from the classic understanding of a Butterfly network.
VBF(n) is defined by the following proposition:

Proposition 5. Consider G to be the monoid formed by
the cartesian product Zn×Z2n with binary operation ∗ given
by: (l, x) ∗ (l′, x′) =

`

l + l′(mod n), x + x′ · 2l(mod 2n))
´

.
Then, considering the generating set S = {(1, 0), (1, 1)}, we
have that Cay(G,S) is VBF(n)

VBF(n) is based on a monoid because the new opera-
tion precludes the existence of an inverse (a monoid is just
a group without the inverse property). Despite this, our
analytical and experimental framework continues to apply
to the VBF(n) and we will analyze it together with all the
other networks.

We should also note the parallels between the Hypercube
- Chord pair and the Butterfly - Viceroy pair. They are
both based on the same group and generating set, and the
only difference is the binary operation used: In two cases
it is bit-wise (Hypercube and Butterfly) and in the other
two it is regular addition modulo N (Chord and Viceroy).
The fact that the first two are not proven to be successful
P2P networks while the later two are, should tell us some-
thing about the requirements on the structure of the Cayley
graphs that represent them.

Finally, we also analyze the star graph, which has been
suggested as a possible candidate for P2P overlays in [28]



Table 1: P2P networks and their respective Cayley graph parameters, where ⊕ is component wise addition,
◦ is permutation composition, σl(x) is a circular permutation of length l and negation in ± represents the
inverse with respect to the group’s operation.

Cayley Group and generating set
Group set (Cardinality) Group operation Generators Overlay

Zn
2 (2n) ⊕ mod 2 {1i, i = 1, ..., n} Hypercube

Z2n (2n) + mod 2n
˘

2i, i = 0, ..., n − 1
¯

Chord

Z2n (2n) + mod 2n
˘

±2i, i = 0, ..., n − 1
¯

SkipNet

Zd·c
2 (2d·c) ⊕ mod 2c {±1i, i = 1...d} CAN

Zn × Zn
2 (n2n) (l, x) ∗ (l′, x′) =

`

l + l′(mod n), x ⊕ σl(x′)
´

{(1, 00...0), (0, 10...0)} Cycloid

Zn × Zn
2 (n2n) (l, x) ∗ (l′, x′) =

`

l + l′(mod n), x ⊕ σl(x′)
´

{(1, 00...0), (1, 10...0)} Butterfly

Zn × Z2n (n2n) (l, x) ∗ (l′, x′) = (l + l′(mod n), x + x′ · 2l (mod 2n)) {(1, 0), (1, 1)} Viceroy
Sn (n!) ◦ {(1, i), 1 < i ≤ n} Star
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Figure 4: The three fixed-degree overlay networks

but which has not yet been analyzed from the PDMS per-
spective.

Proposition 6. Consider G to be Sn, the group of per-
mutations of n symbols, with permutation composition as
its binary operation. Then, considering the generating set
{(1, i), 1 < i ≤ n}, we have Cay(G, S) is the Star graph.

Many other Cayley graphs can be defined, but for space
considerations we had to limit the presentation to the above,
which we have summarized in Table 1. One significant omis-
sion is the Pancake graph. In this case, our analysis, as well
as our experimental results were similar to those of the Star
network, hence the decision to remove it from the current
presentation.

5. INITIAL ASSESSMENT OF EXISTING
CAYLEY GRAPH OVERLAYS

A thorough analysis cannot be presented without first an-
swering some simple questions: How large is the routing
table? Is the network able to inherently support load bal-
ancing? Is it optimally fault tolerant? We briefly answer
these questions here.

5.1 Node degree
The size of the routing table in a PDMS node translates

in the maximal degree of a graph’s nodes. For a designer,
this may be imposed by external factors. In mobile ad-
hoc networks for instance, implementations on bluetooth
devices are limited to seven simultaneous connections. Con-
sequently, in order to ensure the physical limitations are
not overstepped, the designer may not be able to choose a
network with a variable number of neighbors per node. Con-
sequently, we will avoid stating that a particular number is

good or bad, but rather classify the networks in two types:
fixed degree (BF(n),VBF (n),CCC(n)) and variable degree
(Hypercube, Chord, SkipNet, Star).

Among networks with variable degree, the Star network
is the best as it has the lowest node degree among networks
with the same diameter and number of peers. For this rea-
son, it has been previously suggested [28] as a potentially
better P2P overlay.

5.2 Vertex transitivity
Intuitively, a graph G is vertex transitive if the any node

has the same view of the graph. Formally: ∀x, y ∈ V , ∃ an
automorphism Φ : V → V such that Φ(x) = y.

This is exactly the definition of a “pure”P2P network: All
nodes view the network in exactly the same way, and none
is more loaded, in any way, than another. Cayley graphs are
the largest class of vertex transitive graphs, and because of
this, provide the most opportunities for network design.

5.3 Edge transitivitiy
As in the case of nodes, we are equally interested that no

edges be more loaded than others. Graph theory suggests
edge-transitivity:

Definition 8. A graph G = (V, E) is arc-transitive if
∀(u, v), (x, y) ∈ E,∃φ : V → V , an automorphism of G,
such that φ(u) = x and φ(v) = y. If we consider (u, v)
and (x, y) without direction, then we say that G is edge-
transitive.

Among the most popular P2P structures, there exist some
that are not arc- or even edge-transitive. In particular, the
chordal ring and CCC(n). It is easy to see why this is so:
In both of them, we clearly have two types of edges – in
one case we have the ones forming the ring versus the ones
defining the chords, while in the other we have those defining
the cycles and those forming the cube structure.

Obs. 1. Chord, SkipNet and Cycloid’s overlays are not
edge-transitive while Hypercube, Star, VBF (n) and BF(n)
are.

The above observation indicates that edge transitivity is
not a prerequisite of good PDMS despite the apparent ben-
efits of graphs that exhibit this property. Consequently, it
does not need to be considered in the design process of a
PDMS.



Table 2: New measures to quantify quality, in terms of latency, query completeness and load balancing
Target Basic mea-

sure
New measure

latency &
query
completeness

Optimal fault
tolerance

Diameter re-
silience

how is the maximum distance between nodes affected by the
removal of some other nodes?

Node bisection
width

how easy is it to separate the network in two disjoint and almost
equal subnetworks?

load
balancing &
scalability

edge
transitivity

Edge bisection
width

is there a bottleneck through which all messages must pass to
reach one side of the network from the other?

vertex
transitivity

Hierarchy is the graph easily partitionable such that each vertex maintains
an equal amount of IDs?

5.4 Optimal fault tolerance
As stated in Definition 4, a graph is optimally fault toler-

ant if the minimum number of nodes that have to be removed
in order to disconnect the graph is equal to the minimum
degree of any of its nodes. It is tempting to qualify a PDMS
as “better” if its underlying graph is optimally fault toler-
ant. This is true but insufficient. In fact, all existing P2P
overlays are optimally fault tolerant. The reason for which
such optimality is routine among P2P networks is that it
sets too low standards. We show this analytically using the
following theorem by Godsil [10]:

Theorem 1 ([10]). Let S = {s1, ..., sd} be a minimal
generating set of a group G. Then the Cayley digraph Cay(G, S)
is optimally fault tolerant.

Theorem 1 illustrates how optimality is achieved. Def-
inition 4 is based on the equality of two parameters: the
connectivity number and the minimal degree. The theorem
reduces the degree of the graph to reach equality, thus giving
a false impression of quality. Instead, for PDMS, we want to
increase the connectivity number to make the network more
resilient.

In general, PDMS assume the risk of a few nodes failing,
and the optimal fault tolerance requirement fails to apply
as soon as one node gets disconnected from the network.
This is too restrictive and does not indicate overall network
resilience. As we will see in the next section, a much more
informative measure is bisection width: the number of nodes
that need to fail to separate the network in two almost equal
subnetworks.

6. ALTERNATIVE FAULT TOLERANCE
MEASURES

The previous sections have observed that all Cayley graphs
that are the basis of existing structured P2P overlays are
optimally fault tolerant and vertex transitive. If we are to
understand their differences better, we need to look at more
advanced quality measures. Considering our targets of mea-
suring latency, query completeness and load balancing, we
extend the basic measures with diameter resilience (for la-
tency), node bisection width (for query completeness), edge
bisection width (for load balancing) and hierarchy (for scal-
ability), as summarized in Table 2. Also, we analyze hamil-
tonicity (the possibility to efficiently answer range queries)
and conclude that it is a significant requirement for networks
to become good overlays.

To get a better picture of the correspondence between
the analytical results and their practical consequences, we

present experimental results in parallel to the analysis. De-
tailed information and further experiments are presented
in Section 7. Here, we just mention that query, data and
peer failure distributions are considered uniform and net-
work sizes range between 1024 and 5040 nodes. The query
success rates are averaged over 200 executions and plotted
with vertical error bounds given by the standard deviation.
Maximal path lengths are plotted by taking the maximum
over all runs in a particular category of interest.

6.1 Diameter resilience
We have seen in Section 5.4 that all overlays are opti-

mally fault tolerant and we have concluded that the kind
of optimality generally considered for graph connectivity is
not sufficiently informative for the analysis of P2P overlays.
One way to go deeper into the study of fault tolerance is
to look at how fast and how much the diameter of the net-
work increases as the nodes fail. This has a direct effect on
the maximum latency that the user experiences in a PDMS
system. We conjecture that if λ is the connectivity of the
graph, then a good network will be one that can sustain the
removal of up to λ− 1 nodes without changing its diameter
by more than a constant factor.

We use the definition of wide diameter introduced by Hsu
[13]:

Definition 9. Let k and λ be two integers, k ≤ λ. Let
G be a λ-connected graph and x and y two distinct vertices.

The k-distance between x and y is equal to the least num-
ber l such that there exist k vertex-disjoint paths be-
tween x and y whose lengths are at most l. Denote it
by dk(x, y).

The k-diameter is the maximum of the k-distances dk(x, y)
taken over all distinct pairs x, y. Denote it by dk(G).

The wide-diameter is the k-diameter if k = λ. Denote it
by wdiam(G).

A graph is then called strongly resilient if wdiam(G) =
d1(G) + O(1). Table 3 shows the diameter and wide diam-
eter of every network. We observe that, with the exception
of Viceroy, all networks are strongly resilient, their wide di-
ameter differing only by a constant.

We test the effects of the wide diameter using our net-
work simulator by looking at how the maximum path in-
creases in the first 20% of node failures. Networks with a
variable number of neighbors, such as Chord, Hypercube,
CAN or SkipNet, despite their slight differences in the wide
diameter, consistently show very good resilience, maintain-
ing their original diameter. Networks with a fixed number
of neighbors (VBF , BF , CCC) are naturally more sensitive
and ordering them based on the wide diameter matches their



Table 3: Wide diameters of P2P overlays
Overlay diam w-diam

Hypercube n n
Chord n ≤ n + 2

SkipNet ⌊n

2
⌋ ≤ ⌊n

2
⌋ + 2

CAN d · 2c−1 ≤ 2 + d · 2c−1

Cycloid 2n + ⌊n

2
⌋ − 1 2n + ⌊n

2
⌋ + 2

Butterfly n + ⌊n

2
⌋ n + ⌊n

2
⌋

Viceroy n n + O(n

2
)

Star ⌊ 3(n−1)
2

⌋ ⌊ 3(n−1)
2

⌋ + 4

Figure 5: Maximum path increase factor in Butter-
fly, Viceroy, CCC and Star

ordering using experimental results. The Star network also
shows an increase in the maximum route despite its wide di-
ameter being only a constant factor greater than the regular
diameter. The reason for this is that the constant factor 4
is actually significant when compared with n: The explosive
size of the Star requires n to be small. For instance, n = 10
results in 3.6mil IDs, and in this case, the diameter is 13
and thus the constant 4 represents a 30% increase of the
diameter.

Still, as shown in Figure 5, where the y-axis indicates
the proportion between the maximal query path in the net-
work with failures and the maximal path in the ideal net-
work, the Star network increases its diameter slower than
the fixed-degree networks. Viceroy, though it has the small-
est diameter, has a wide diameter equal to that of Butterfly,
making it jump as soon as a very small set of nodes fail.
Variable-degree networks are not plotted because they show
a constant factor 1.

We conclude that wide-diameter is a significant distinctive
measure for fixed-degree networks, where it indicates how
well the network is able to maintain the optimal diameter.

6.2 Bisection width
An orthogonal approach to extending the optimal fault

tolerance is to measure the ease, in terms of number of failed
nodes, with which the network fails to provide a path be-
tween two live nodes.

In the case of optimal fault tolerance, a network is con-
sidered as having “failed” as soon as a single node is dis-
connected from the rest of its peers by the disappearance of
its direct neighbors. In P2P networks, this is obviously not
the case. In general, a network contains thousands or many
more nodes, and it continues to be functional when a single
node is disconnected.

With this scenario in mind, we need a measure to tell us
how difficult it is to disconnect the network in such a way
that a significant number of peers are disconnected from an
equally significant number of other peers. If this kind of

situation occurs, then each of the nodes loses connectivity
to half the network, and a potentially much worse situation
than the one we described in the previous paragraph arises.

The main approach to quantifying this problem is the
bisection width. The most common definition of bisection
width refers to the minimal number of edges that need to
be removed to separate the graph into two disjoint sets of
nodes of equal or almost equal size. This measure is also im-
portant, and we will consider it in the next section on load
balancing. Here, since we are concerned with node failures,
we prefer to use the following definition:

Definition 10. Let G be a graph. A subset Ω of the
nodes of G is a node bisector if G may be expressed as the
disjoint union G = Ω1 ∪Ω∪Ω2, where ||Ω1| − |Ω2|| ≤ 1 and
where any path from Ω1 to Ω2 in G must pass through Ω.

Then, we will call the node bisection width the value ν(G) =
min{|Ω| : Ω is a node bisector}

This is similar to the definition in [6], but more general,
in the sense that it does not restrict the absolute size of
the resulting partitions, but correlates them. In general,
there is little literature on the subject. It is perhaps worth
mentioning that for Cayley graphs defined on commutative
groups with symmetric generating sets of size r, ν(G) =

O(|G|1− 1

r ) [6]. This applies to Chord, Hypercube, CAN
and Star, but not to VBF , BF or CCC. In the absence of
more general results, we will be looking in more detail at
our specific networks of interest.

From Table 4, we can clearly see that Chord and SkipNet
perform optimally. They do not admit any set of nodes to
split them into two subnetworks of almost equal size. For
Star, we only know the bounds of the node bisection width,
but they are enough to show that the number of nodes that
need to fail is proportional to the total number of nodes in
the network.

Figure 6 shows experimental results confirming the order-
ing of the overlays based on node bisection width as a mea-
sure of query success rate. Error bars are shown selectively
to avoid clutter.

Certainly, bisection width is not the only factor in query
success rate, and this may be seen if we look at SkipNet
and Chord: They have the same bisection width, but Skip-
Net outperforms Chord. This is because SkipNet has bi-
directed edges, thus effectively having twice the amount of
neighbors of Chord. To see this, we have also implemented
a variant of Chord, with the same number of neighbors as
SkipNet, which we have called Chord2n. The neighbors of

Table 4: Bisection width of P2P network overlays
Bisection width

Overlay Node Edge

Hypercube

n!

2( n

2
)!

if n is even,

2n!
⌊ n

2
⌋!⌈n

2
⌉!

if n is odd
2n−1

Chord 2n 2n

SkipNet 2n 2n

CAN (2D) 2c+1 2c + 2
Butterfly 2n 2n

Viceroy 2n+1 − 2 2n+1 − 2

CCC 2n−1 2n−1

Star
lower bound: Ω((n−1)!)
upper bound:O(n!/

√
log n)

n!
4
+O(n−1)!
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Figure 6: Query success rates for different networks is correlated with node bisection width

Table 5: New chordal ring overlays
Overlay Generators Node bisec-

tion width

Chord2AD {1, 2⌈ n

2
⌉, 2n − 1, 2n − 2⌈n

2
⌉} 2 · 2⌈ n

2
⌉

Chord2AP {1, 2⌈ n

2
⌉−1, 2n−1, 2n−2⌈ n

2
⌉}+1 2 · 2⌈ n

2
⌉

Chord2SD {1, 2, 2n − 1, 2n − 2} 4

Chord2SP {1, 21 + 1, 2n − 1, 2n − 21} 4

Chord2LD {1, 2n−1, 2n − 1} 4

Chord2LP {1, 2n−1+1, 2n−1, 2n−2n−1−1} 4

Chord4 {1, 2, 2n−2, 2n−1} 2 · 4⌈ n

3
⌉

Chord2n are {2i, 2i + 1|0 ≤ i < n} hops away from the cur-
rent node. As can be seen, Chord2n slightly outperforms
SkipNet, showing that SkipNet does better than Chord sim-
ply because of its higher number of neighbors.

We further prove our claim that node bisection width is
a significant quality measure for the overlay underlying a
PDMS by implementing new networks with the same degree
based on the chordal ring. Table 5 indicates their genera-
tors and their node bisection widths, while Figure 6c shows
the corresponding simulation results. The new chordal ring
overlays are representative of the possible chordal ring net-
works because they take as generators numbers that are ei-
ther prime with respect to the number of nodes (P), either
a divisor of it (D). They are small (S), average (A) or large
(L) (hence their names: Chord2AD is a chordal ring with
an average divisor as generator, or Chord2SP - a chordal
ring with a small prime as generator, etc.). Chord4 uses a
combination of small and large divisors. The networks us-
ing generators that are prime with respect to the number of
nodes create hamiltonian cycles intertwined with each other
while those with generators that divide the number of nodes
create vertex-independent cycles. Comparing Table 5 with
Figure 6c, we see that chordal rings whose generators are
such that the bisection width is not constant, have a much
higher query success rate than those with constant bisection
width.

6.2.1 Edge bisection width
As mentioned in the previous section, node bisection width

is not the most common and in fact most works referring to
“bisection width” actually deal with edge bisection width.
We can then ask ourselves if, from the PDMS point of view,
edge bisection width is an equally important parameter to
take into account.

In P2P networks, because we are dealing with overlays
and not low-level physical communications, it is generally
assumed that a connection does not fail unless one of the

nodes fails. This is a fair assumption because the Transport
Level of the IP Protocol Suite deals with the physical in-
terconnection and unless there is a major disruption at one
of the Internet’s backbone providers, it is always possible to
find a route between two peers, such that query complete-
ness will not be affected. In this sense, the edge bisection
width is not a significant measure to look at.

However, edge bisection width has also been considered
as a measure of the potential bottleneck that can arise in a
network. If we look at the Butterfly or CCC graph in Figure
4, it is easy to see that all messages that pass between the
peers in the upper half and the peers in the lower half have
to pass by the edges that are connected to the nodes on level
0. This happens regardless of the size of the network. It is
fair to assume that those edges will be, on average, more
loaded than others.

Our experimental results do not confirm this assumption.
Figure 7 shows the distribution of passes over the different
edges. In these experiments, queries were uniformly dis-
tributed among nodes. To plot Figure 7, we counted the
number of times each edge type was used. By edge type, we
mean an edge of a particular length in the case of Chord,
SkipNet and Hypercube, a cycle or diagonal edge in the case
of Butterfly, CCC or Viceroy, a particular direction in the
case of the two dimensional CAN, or a particular transpo-
sition in the case of the Star network. Experimental results
show that the distribution over edge types is uniform for
Chord and Hypercube. For SkipNet we see a peak at the
edge that forms the diagonal (2n−1) and this is only because
it is its own inverse, and so it is counted twice. The other
edges that are used more are those of very small length (1
and 2). They seem to “take” usages from the next larger
edge (4). This is because with undirected edges, the routing
decides to jump slightly further and then make a small step
back rather than always making a step forward (e.g., instead
of reaching 7 via 4, 2 and 1, it goes via 8 and −1).

For Butterfly and CCC, we see a clear difference between
the cycle edges and the diagonal edges. The more frequent
use of cycle edges in CCC is due to the fact that they rep-
resent the only way for the query to go from one level to
another, as opposed to Butterfly, where diagonal edges are
truly diagonal and cross levels. Overall, the expectation
that the diagonal edges at level zero be used more than the
rest is not met. Viceroy is more balanced, but it shows an
increased usage of diagonal edges at level zero, further con-
vincing us that edge bisection width is not a reliable way to
characterize imbalance in edge usage.

Finally, the two-dimensional CAN and Star networks show
almost uniform patterns as well. The slight skew in CAN
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Figure 7: Distribution of queries over edge types
does not show that edge bisection width has an ad-
verse effect on the load balancing of bandwidth us-
age.

is due to the fact that there is an implicit ordering in the
neighbors, so when a node that is half-way across the torus
is searched, the “forward” edges are preferred (up and right
if we consider a usual 2d plot). This imbalance disappears
when failures occur because queries are given less routing
choices and thus get less opportunities to favor “forward”
routes.

6.3 Hierarchy
It has been observed in [28] that many overlays are hierar-

chical Cayley graphs. This property has implications both
in terms of optimality of fault tolerance and definition of
routing methods based on recursiveness. Recently, Loo et
al. [23] have taken advantage of this property in defining a
recursive declarative language for interconnection networks,
though without mentioning it explicitly.

Let us first formally define two notions [3]:

Definition 11. A Cayley digraph Cay(G, S) is strongly
hierarchical if S is a minimal generating set.

An ordered set S = {s1, s2, ..., sd} is said to be quasi-
minimal if ∀2 ≤ i ≤ d, si does not belong to the group
generated by {s1, s2, ..., si−1}.

A Cayley digraph Cay(G,S) is hierarchical if there exists

an ordering ~S of S such that ~S is a quasi-minimal set.

By looking at their generating sets, it is easy to observe
that the Hypercube, VBF(n), BF(n) and CCC(n) networks
are strongly hierarchical, and consequently, hierarchical. For
Chord, we propose the following:

Proposition 7. The Cayley digraph defining the Chord
P2P overlay is hierarchical.

Proof. To see this, it is sufficient to give a descending
order to the generating set used in Proposition 1. Then,
each prefix subset S′ ⊂ S will only generate those elements

that are a multiple of the smallest element in the subset,
thus “jumping over” the elements in S\S′.

In terms of node load balancing, a hierarchical network
allows a node to maintain a known subset of IDs. More
importantly, when it needs to insert a new peer, each node
knows exactly what ID to give it: the one obtained by ap-
plying the next available largest generator (according to the
given ordering of the generator set) to its own ID.

This provides the load balancing mechanism in PDMS
that do not fix the IDs of nodes prior to the joining process,
like BATON, for instance. If we regard this via the trans-
formation presented in Section 1.1, BATON maintains its
balanced structure by taking advantage of the hierarchical
properties of Chord. However, hamiltonicity is required in
this process, and we analyze it in the next section.

6.4 Hamiltonicity
After having extended the basic quality measures from

Section 5 into more advanced ones in Sections 6.1-6.3, we
look at hamiltonicity – the existence of a cycle passing through
every node exactly once.

Why is this important? We identify three reasons for it:

1. Default routing: As shown empirically in [11], adja-
cency links provide significant help in terms of query
success.

2. Range queries: To efficiently answer range queries,
a node must be able to identify quickly which of its
peers maintains the sub-ranges that it does not have.

3. ID management: In virtually all cases, the number
of peers is strictly smaller than the number of available
IDs. Then, each peer assigns itself a subset of IDs and
this can be done efficiently if there exists an ordering
of the IDs.

In general, Cayley graphs are not known to always have a
hamiltonian cycle. However, all Cayley graphs defining our
networks of interest are hamiltonian.

Before continuing our discussion of the three points just
mentioned, we need to observe that every complete graph
has a hamiltonian cycle. This is obviously true since any
ordering of the nodes in a complete graph (i.e., a graph that
has an edge between any two nodes) is a hamiltonian cycle.
We make this trivial observation to point out that though
a hamiltonian cycle is helpful in P2P overlays, the fact that
a structure contains a hamiltonian cycle does not make it
necessarily a good P2P structure. We need to show that
there is such a cycle in a network with small routing tables.
The following theorem, from Pak and Radoičić [26] helps:

Theorem 2 ([26]). Every finite group G of size |G| ≥
3 has a generating set S of size |S| ≤ log2 |G|, such that
Cay(G, S) contains a hamiltonian cycle.

For P2P overlays, this theorem gives us a measure of the
“quality” of a network in terms of its hamiltonicity: if it
needs more than a logarithmic number of neighbors, it is
not optimal. In this sense, all the structured overlays we
study are optimally hamiltonian. Among them, we observe
that only Chord and SkipNet maintain this cycle in a very
explicit manner while the rest, though they each possess a
hamiltonian cycle, do not make use of it explicitly. Hyper-
cube and CAN have hamiltonian cycles given by a space
filling curve while CCC(n) builds its hamiltonian cycle by



a straightforward extension from the hypercube. For the
VBF (n), we have the consecutive traversal of horizontal lev-
els in Figure 4 while for BF(n) the hamiltonicity is shown
in [5] for the directed version, and consequently, for the in-
directed version.

With respect to range queries, the existence of the hamil-
tonian cycle is useful only if the graph is undirected. This
is why, for instance, SkipNet does naturally support them
while Chord does not. Cycloid and Viceroy are both consid-
ered to have undirected graph and could potentially support
range queries, though this is not mentioned in the respective
papers. CAN is the most flexible in this regard because it
supports also multi-dimensional range queries by consider-
ing cycles on each of its dimensions.

Apart from the existence of a hamiltonian path, it is
equally important to have an easy way for each peer to know
which other peer is to its “left” or “right”. This is easy in
SkipNet: The peer with the largest ID smaller than the cur-
rent ID is to the left and the one with the smallest ID greater
than the current one is to the right.

It is less obvious in Viceroy, which is why the authors of
[25] have introduced additional IDs (in a range between 0
and 1) to arrange the peers, even though, ultimately, the
ordering they obtain matches perfectly the natural hamil-
tonian cycle of the VBF (n) that we have indicated above.
In the case of CCC(n) the order of traversal of the cycles
that bind together the cube depends on the corner of the
hypercube that the particular cycle occupies and also on
how the space filling curve was started. A similar situation
occurs for BF(n) [5], which results in the requirement of ad-
ditional information to be managed in the network to make
sure that each node is able to compute its correct position
on the cycle.

Finally, the Star is a special case: though it has a hamil-
tonian cycle, it takes O(n!) for a node to obtain its own
position on the cycle [18]. This forces a node to maintain
extra adjacency links.

The third argument we have identified for a network to
have a hamiltonian underlying structure is ID management.
In Chord and SkipNet, a node maintains all documents with
IDs between itself and the next larger neighbor. This be-
tween implies an order in the ID space, and consequently,
since nodes are also part of the ID space, an order between
all nodes - a hamiltonian cycle. This, and the hierarchy pre-
sented above, are prerequisites for the ability of the network
to efficiently handle an ID space larger than the number of
nodes.

7. EXPERIMENTAL RESULTS
For our experiments, we have designed, implemented and

executed a generic framework based on Cayley graphs. The
system’s architecture is shown in Figure 8. The idea is to
provide the user with a plug-and-play system that allows
a rapid implementation of a simulator for any structured
overlay based on a Cayley graph.

7.1 Simulation framework
All components of the simulation framework were imple-

mented using the Java 1.5 programming language, taking
extensive advantage of its generic types. The four main com-
ponents of the framework, as shown in Figure 8, are:
Abstract group: Defines a generic Cayley graph, from which

we derive the plug-in classes that implement different

Figure 8: Architecture of Cayley-based implemen-
tation of common P2P networks simulator

overlays specifications.
Plug-in modules: The modules, depicted as spheres, are

classes derived from AbstractGroup that specify the
actual group and generator set being used, as defined
for instance in Table 1.

IdDistributor: When testing sparse networks, the IdDis-
tributor assigns subsets of the ID space to different
nodes.

Network: The network simulator launches test queries which
execute according to the group and generator set de-
fined in the plug-in module currently used. It captures
success rates as well as edge and generator usages.

As different networks have different identifier types (an
integer for Chord, a (level, id)-pair for Butterfly, an ar-
ray of integers for CAN, etc.), each network specification
is parametrized with its identifier type. The requirements
for these types are restricted to the existence of a way to
iterate through the set of identifiers and the possibility to
pick one at random.

To test a new structured overlay, the user must only de-
rive a new class either from AbstractGroup or, if the new
overlay is similar to one that is already implemented, from
an existing descendent of the AbstractGroup. Similarly, a
new identifier type may be necessary, or an existing one can
be used. Apart from this, the user does not need to modify
the network simulator, but only instruct the framework to
instantiate the correct class when given some command line
parameter.

We have tested the system on a Sun cluster running the
Sun Grid Engine 5.3p6 with 49 nodes using 2 Opteron 2.2GHz
CPUs and 2GB RAM, and 42 nodes using 2 P4 2.8GHz
CPUs and 1GB RAM. Each network simulator was instan-
tiated 200 times for failure rates ranging between 0% and
98% with a step of 2%. Each time, 1000 random queries
were generated. In total, we simulated 25 networks for a to-
tal of 250 million query tests. Results were aggregated over
the 200 runs for each failure rate and for each network, by
averaging when we looked at success rates and by taking the
maximum when we look at the maximal distance between
nodes. Network sizes ranged between 1024 and 5040 nodes.



7.2 Routing
The AbstractGroup class implements a default routing

strategy, which takes into account only the generic group
elements that are available at this level of the architecture.
This generic routing method provides us with an important
baseline for our experiments: it shows the shortest possible
route in the presence of different levels of failures. Compared
against this baseline, implementations of the real routing
protocols of existing PDMS will show if the PDMS takes
full advantage of its underlying structure.

7.2.1 Generic routing
Viewed as graphs, all structured P2P networks are en-

dowed with an algorithm to find the shortest path between
any two nodes, provided that each node has an image of
the graph that forms the network. This knowledge is rep-
resented in our framework by maintaining only three items:
the group used, meaning both the set of elements and the
operation, and the set of generators.

We have implemented the generic routing based on Dijsk-
tra’s algorithm in order to measure two things: how each
overlay is able to sustain node failures without recurring to
additional recovery methods, and how close actual P2P net-
works come to this optimum.

7.2.2 Overlay-specific routing
Each overlay can specify its own routing by overriding a

single method in the AbstractGroup class. We have imple-
mented the specific routing methods of Chord, HyperCuP,
Viceroy and Cycloid.

The Chord routing chooses at each step the live neighbor
closest to the target destination, without overstepping it.
This is easily implemented in our framework in only 20 lines
of Java code. Similarly, the HyperCuP routing tries to se-
quentially correct every bit, and each node forwards a query
greedily to the live neighbor that can correct the left-most
bit.

In Viceroy, a query first attempts to go to level zero, then
traverses a tree in the network and finally routes along a
cycle. In Cycloid, the query is routed by a sequence of bit-
corrections like in the case of the Hypercube, but intermixed
with the traversal of cycles at each corner of the hypercube.
Figure 9 shows the difference between these real routing pro-
tocols and the optimal routing. To differentiate, the former
are denoted by the names of the PDMS and the latter are de-
noted by the names of the underlying structures. As can be
seen, Chord and HyperCuP maintain the same trend in their
real routings as they have in the optimal case. Viceroy and
Cycloid perform much worse, mainly due to the inflexibility
of the routing method, unable to reroute in the presence of
failures.

These observations open an interesting direction for future
research: to what extent does the underlying infrastructure
allow the optimal routing to be implemented in a set of
simple rules that can be applied independently at each node.

7.3 Non-Cayley overlays
In addition to the networks that are based strictly on Cay-

ley graphs, our framework can simulate networks that are
“quasi” isomorphic to a Cayley graph. We show this using
BATON. We have implemented the original routing algo-
rithm as described in [15] and used the source codes available
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on the Internet1 to test our simulator against the network’s
execution on PlanetLab. For the latter, we have used 8
PlanetLab nodes, each running up to 500 peers and an ad-
ditional PlanetLab node to launch and collect information
from the peers. Figure 10 shows the results of these experi-
ments. The simulator is able to provide a good approxima-
tion, with an apparent underestimation of the performance
when more than a third of the nodes fail. This is likely due
to additional fault tolerance measures implemented later in
the BATON protocol.

Other networks, like Pastry, Tapestry or those based on
deBruijn graphs [24] show similarities with Cayley graphs
and are the focus of current research.

8. CONCLUSIONS
We started this work with the aim of identifying a set of

measures to follow when choosing or designing a structured
overlay for a PDMS. Our strategy was not only to look at
graph-theoretic measures, but also to learn from the experi-
ence of the past half decade by matching the proposed mea-
sures with the existing overlays to discover which of them
are indeed significant. We identified four categories of mea-
sures:

1. Always true: vertex transitivity, optimal fault toler-
ance, hierarchy : all networks display these properties
and we can conclude that these are required, but do
not differentiate between the networks.

2. External: node degree: networks can have either a
fixed or a variable number of neighbors. This decision

1http://www.comp.nus.edu.sg/∼bestpeer/resource.html



is generally taken even before the design process starts,
subject to external constraints.

3. Misleading: edge transitivity, edge bisection width:
though claimed to be an indication of bandwidth load
balancing, our experimental results disprove this claim.

4. Proper: diameter resilience, node bisection width, hamil-
tonicity : these measures are indicative of a networks
capacity to maintain low latency and query complete-
ness in the presence of failures.

The proper measures indicated above are not guarantees
of quality, but prerequisites: when designing a network, we
should look for a structure that is strongly resilient and has
a very high node bisection width. Hamiltonicity comes with
a small print: not only should the network have a hamilto-
nian cycle, but also every node should be able to identify
its position on this cycle and also identify its neighbors effi-
ciently.

So which overlays may claim stardom in PDMS? The Star
network had been suggested as a good candidate in [28]
because it is able to maintain a low diameter and at the
same time a small routing table. Our analysis shows that it
also displays good performance against all measures except
hamiltonicity. Yet there is no PDMS using the Star as an
underlying overlay. This is an indication that 1. Hamiltonic-
ity is important and 2. The Star may be simply too complex
and counter-intuitive for its adoption in real systems.

Chord seems to be the most entitled to be the reference
network. Here again, hamiltonicity plays a key role: since
all these networks have a hamiltonian cycle, all of them can
be arranged as a chordal ring and thus provide support for
Chord’s claim to fortune. As we have seen experimentally
(Figure 6c), a chordal ring performs very well even with
a fixed number of neighbors, reducing the need for more
complex structures such as the butterfly.

Finally, in the process of analyzing all these overlays, we
have created a framework by which a designer can implement
and simulate easily different network structures. Within this
framework, we can go from idea to simulation results within
a day - a significant aid for a system designer. The simu-
lations can either use a default routing protocol, based on
Dijkstra’s algorithm to identify the potential of the network,
or specify their own routing protocol. While the former is
a sort of upper bound on its performance, the latter pro-
vides a lower bound, given that no non-standard fault tol-
erance measures are used, such as caching or replication.
Both of these bounds give the designer a significantly better
perspective over the capability of the structured overlay to
withstand failures.
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