
A Content-Based Resource Location Mechanism in PeerIS

Bo Ling�, Zhiguo Lu�, Wee Siong Ng�, BengChin Ooi�, Kian-Lee Tan�, Aoying Zhou�

�Department of Computer Science and Engineering
Fudan University

Shanghai, China, 200433
�lingbo,luzhiguo,ayzhou�@fudan.edu.cn

�Department of Computer Science
National University of Singapore

3 Science Drive 2, Singapore 117543
�ngws,ooibc,tankl�@comp.nus.edu.sg

Abstract

With the flurry of research on P2P computing, many P2P
technical challenges have emerged, one of which is how to
efficiently locate desired resources. Advances have been
made in this hot research field, where the pioneers are Pas-
try, CAN, Chord, and Tapestry. By using the functionality
of distributed hash table, they have achieved fair effective-
ness. However, they have many common limitations, such
as ignoring the autonomous nature of peers, and just sup-
porting weakly semantic functions. In this paper, accord-
ing to the reality in the distributed network, we propose
a content-based location mechanism, which not only keep
the autonomy of peers, but also support approximate query
and finer granularity of content sharing. Furthermore, this
mechanism also facilitates P2P system to evolve dynami-
cally. We have also used PeerIS, a P2P based information
system used to verify it and obtained satisfactory results.

1. Introduction

A long-standing tenet of distributed systems is that the
strength of a distributed system can grow with more hosts
participating in it [6], since each participant contributes data
and computing resources to the overall system, the wealth
of the community can scale with the number of participants.
A peer-to-peer (P2P) distributed system is one in which
all participating computers (which can be called nodes or
peers) have equal capabilities and responsibilities and can
interact with each other directly and symmetrically. Instead
of strictly decomposing the system into clients (who con-
sume services) and servers (who provide services), nodes

can decide to be clients as well as servers. This grand ar-
chitecture has many potential advantages, e.g., scalability,
robustness, lacking of need for administration, and even
anonymity and resistance to censorship. Thus, this com-
puting model is now viewed as a potential technology that
could re-architecture the distributed architectures.

Unfortunately, the recent flurry of research has quickly
shown the immense technical challenges associated with
P2P computing, particularly in term of scale, one of which
is how to efficiently locate desired resources in this kind of
decentralized, ad-hoc and dynamic networks, because this
decides whether their resources can be efficiently used or
not. Furthermore, this challenge greatly affects the sala-
bility of P2P systems and the realization of their other po-
tential advantages. Although, CAN [10], Pastry [1], Chord
[13], and Tapestry [16] have focused on this research field
and made some progress. However, in these systems, files
are associated with a key (typically produced by hashing
the file name) and each peer in the system is responsible for
storing a certain range of the keys, regardless of which user
the corresponding files belong to. Obviously, this method
has many limitations. Firstly, it ignores one of the most im-
portant natures of P2P nodes–autonomy, which is against
the idea of P2P. Secondly, it just supports precise query but
not approximate query. And thirdly, it just supports file-
level sharing. In this paper, we propose a content-based
resources location mechanism, which can solve all of the
problems mentioned above. Our automatic mechanism is
based on the reality in distributed networks, e.g., the Inter-
net, where users almost just maintain and search for their
favorite materials. Thus, their favorites can be captured ac-
cording to the category distribution of the files that they
maintain. Furthermore, their query distribution bares cer-
tain relation with that of their files. With the strategy of file

classification, our mechanism can easily determine the sim-
ilarity degree of favorites between peers as well as predict
the category distribution of their queries, and further guar-
antee the peers with high similarity of favorites clustered
closely, so that efficient location can be achieved. Besides
supporting autonomous nature, finer granularity of sharing
and approximate query, a sophisticated tactic in this mech-
anism facilitates P2P systems to evolve dynamically. We
have implemented this mechanism in PeerIS, a P2P-based
information system built upon the BestPeer [14, 8], and
tested it. The experiment results further verify the effec-
tiveness of our mechanism. In short, the main contributions
we make in this paper are as follows:

� We define the similarity degree of favorites and behav-
ior between peers and further present their computing
formulae.

� We propose a content-based resource location mecha-
nism and its implementation procedure, which not only
maintains the autonomous nature of peers but also sup-
ports approximate query and fine granularity of con-
tent sharing. Furthermore, a sophisticated tactic in this
mechanism facilitates the system to evolve dynami-
cally.

� We have implemented our mechanism in PeerIS and
tested it. Our experiment results further verify its ef-
fectiveness.

The rest of the paper is organized as follows: in Section
2, we describe the architecture of PeerIS, a materialization
of our resource location mechanism; Section 3 details the
procedure of the implementation of our mechanism; Sec-
tion 4 describes the mechanism of query processing while
Section 5 we report experiment results and analysis; we dis-
cuss the related work in Section 6 and conclude in Section
7.

2. PeerIS

2.1. Architecture of PeerIS

We have implemented our content-based resource loca-
tion mechanism in PeerIS: a prototype of distributed infor-
mation system built on the top of BestPeer [14, 8]. Best-
Peer is a generic P2P system designed to serve as a platform
on which P2P applications can be developed easily and ef-
ficiently, which has several features that distinguish itself
from other existing P2P systems. Firstly, it is the first sys-
tem having integrated two powerful technologies: mobile
agent and P2P technologies. Secondly, it can shares finer
granularity of content and computational power. Thirdly,
its peer can dynamically reconfigure itself by keeping peers

that benefit it most. Finally, BestPeer introduces distributed
LIGLO naming services.

Since PeerIS is a prototype built upon BestPeer with ex-
tending many functions, its architecture is very similar to
that of BestPeer. The network also comprises two kinds
of entities, i.e., several LIGLOs, who connect and interact
with each other in P2P manner, and a large number of peers.
Each LIGLO connects with all of its peers while a peer can
just connect with a limited number of other peers (due to
its computing and bandwidth capability) at a given time. In
PeerIS, the relationship among peers can define three types:
(a) confidants: two peers connecting directly; (b) acquain-
tance: two peers interacting with one another via confi-
dants and; (c) stranger: two peers without any inaction.
Each peer manages its confidants and acquaintances with a
ConfidantCircle and AcquaintanceCircle respectively. Our
location mechanism facilitates each peer to maximize the
number of its confidants with highest similarity of favorites
and behavior under the constraints of its capability. Thus,
in PeerIS, peers with different favorites and behavior form
different clusters, an in each cluster, the more similar they
are, the nearer (the less logical hops between) two peers are.

Compared with BestPeer, a LIGLO in PeerIS is im-
proved in the following aspects. Firstly, it can monitor
the distribution of file categories in some peers as well as
its change trend. Secondly, according to their metadata or
application tables, it can recommend appropriate confidant
candidates to applicants. Thirdly, a new LIGLO can dy-
namically select and replace “super” nodes among peers
according to their (a) computing resources and bandwidth
capabilities, (b) volume of files and their category distribu-
tion and, (c) the behavior of being seldom offline. All of the
natures mentioned above are helpful for applicants to boot-
strap themselves. Finally, instead of checking the status of
its peers with uniform frequency, a new LIGLO can treat
different nodes with different policies, i.e., it pays more at-
tention to super nodes while pays less attention to common
nodes, which can make computing and bandwidth resources
efficiently used.

Each peer in PeerIS has four components that are loosely
integrated, whose architecture is shown in Figure 1.

Figure 1. The Architecture of PeerIS Peer

The first component is an object management system,

which is responsible for file processing (such as eliminating
stop words and doing stemming), extracting feature terms
and classifying, storing, and retrieving of the files in the
peer. Thus, the system can be used on its own as an au-
tonomous Information System (IS) when out of PeerIS. For
each file it maintains, the associated metadata (index terms,
category, author etc.) stored in a Local Directory, which
has a logical Export Directory to manage the metadata of
its sharable files.

Our object management system integrates a file classi-
fier, which adopts k-Nearest-Neighbor (kNN) method. Ac-
cording to [15], kNN classifier has many properties that
make it suitable to classify peer’s content to achieve our
goal. To support kNN strategy, the files are presented with
a vector space model (VSM) [12]. Furthermore, the model
can harmoniously support query processing, since its inter-
mediate results can be efficiently reused when managing
files. With the application of kNN classifier, the category
distribution of peers’ files and further favorite similarity be-
tween peers can be determined.

The second component is an Agent system called IS-
Agent. ISAgent provides the environment for mobile agents
to operate on. Each PeerIS node has a Master agent, which
clones and dispatches Worker agents to its relative neigh-
boring peers and manipulates answers. It also maintains
the statistics obtained from the query processing and ma-
nipulates the reconfiguration of its confidants. The third
component is a cache manager, which facilitates caching
remote data in secondary storages, and determines the
caching/replacement policy. The last component is the user
interface, which provides a user-friendly environment for
users to submit their queries, maintain their sharable files,
and insert as well as delete files.

2.2 Criterion

Each peer in a P2P network has three sorts of fundamen-
tal resources, i.e., computing resources, information or data,
and bandwidth [5], which are used to depict the characters
of peers naturally:

1. The computing resources of a peer, say � �, are quan-
tified by �������, �������� and �	�
������� re-
spectively. As for the storage capability of a peer, it
just refers to the part of storage used to store sharable
data.

2. Each peer, say �
, just has a limited volume of
bandwidth. Since each connection consumes amount
of bandwidth, the number of connections that peer
�� can maintain has a upper bound presented by
����������� and its connections have a real time
value: �����	����, obviously �����	���� �

�����������, which is the basis of maintaining and
adjusting a peer’s confidants.

3. Each peer maintains a collection of files and shares part
of them with others. Since, in distributed networks,
such as the Internet, individual users just maintain their
favorite materials as well as search their favorite mate-
rials. Based on it, we can assume that in most circum-
stances, the category distribution of queries submitted
by rational users bares similarity to that of the files they
maintain. According to this rationale, we employ the
file classification to determine the users’ favorites and
determine their similarity and further predict the dis-
tribution of their queries. Thus, our mechanism can
guarantee that each peer in PeerIS just maintains the
ones that share similar favorites (which can also be
presented with Group IDs) as its confidants, so that
answers to a given query can be efficiently located in a
small scope in most circumstances.

As follows, we detail the important criteria used in our
mechanism and their computing formulae.

� Similarity degree of favorites. This is the precondition
for a peer, say ��, to determine whether another peer,
say�� , can be its confidant or confidant candidate. It is
captured by the category distribution of their sharable
files, which is obtained by the following formula:

�
�����

	������ ��� �
������������ �

��������������� ��

�

��
���

����������
��

���
��
�	� �

�
��

���
��
�	�

Above, ������ and ������ are the vector of ��’s and

��’s file categories respectively, while
��� ������

��� and��� ������
��� are their norms. Further, ��	� and ��	� are

the weight of file category 	, which peer � � and peer
�� hold respectively. For simplicity, we can use the
following formula to calculate the weight of category
	 of files in the peer ��:

��	� �
��	�

��

Above, ��	� is the number of file of category t which
peer �� holds, while �� stands for the total number of
files that peer �� offers to share with other peers.

With the criterion, a peer can easily determine its own
confidants and further optimize its confidants by ad-
justing the threshold of similarity. Indeed, it is the ba-
sis of our automatic resource location mechanism.

� �����
�
���� and �
������� ���. Here,
�����
�
���� stands for the behavior of peer
��, which indicates the fact when peer �� is on
the P2P network and interacts with other peers,
which can be obtained from its system log by agent.
�
������� ���)is a metric of the similarity of
behavior between �� and �� which can be computed
by the following formula:

�
������� ��� �
��
������ � �
�������

��

stands for the duration when both peer � � and peer
�� are on the P2P network and connect with each
other during a day, while 24 mean there are 24 hours
in a day. Thus, this leads to the constraint: � �
�
������� ��� � �. In practice, it is an important
metric for two peers to maintain their confidant rela-
tionship, since if �� is not on the network while its
confidant �� is, then �� maybe be replaced by other
peers, and the less time �� shares with ��, the higher
probability that �� is replaced by others. This metric
is very useful for a peer to optimize its confidants.

� �
�� �� 	� ��� . It is a metric of rela-
tive importance of peer �� to peer ��. And
can be calculated by the following formula:

�
�� �� 	� ��� � � �
��

��

����������� �

������� �

�
�� � �
������� ���
�� �

�
�������� �����	����

��������� � �������� � !�	�
�������
Above, �� �� �� �� and ! are coefficients and�

��

����������� �

������� �
is the sum of Benefit-Cost of

QueryHits of peer �� , which is given by:

�

��

"#�
$%
	�����

%�&�����
�

�
�����"#�
$%
	�����

%�&�����

�
�

��������������

�
"#�
$%
	�����

%�&�����

Above,
�

����	

����������� �

������� �
stands for to-

tal Benefi-Cost of QueryHits obtained by
peer �� from its own file collection, while�

��������������

�

����������
�

������
� is the sum of
Benefit-Cost of QueryHits obtained by peer �� via
its confidants and acquaintances; while the last three
components stand for the contributions of � � ’s com-
puting capability; Especially,

�
�������� �����	����

is the sum of peer ��’s current connections with
the peers who reply �� with QueryHits, which is an
important factor to determine ��’s relative importance.

With comprehensive metric, a peer can correctly ad-
just its confidants, so that P2P systems can dynami-
cally evolve, which is one of predominant features of
our automatic location mechanism.

2.3 Communication Mechanism of PeerIS

There are two kinds of communication manners in
PeerIS, i.e., pure message and mobile agent, to cater to dif-
ferent needs. Pure message in PeerIS, which is generated
by a peer periodically just as heartbeat, is used to probe the
status of other peers. This manner is very similar to that of
Gnutella [4].

The second communication manner in PeerIS is mobile
agent. Mobile agents that move in PeerIS also maintain
most of the information in the pure massage. However,
its “Workloads” are different. Here, we briefly describe
Workload-Descriptor conveyed by agents:

� Connection. It is used when a peer applies a new con-
nection with another. This mechanism is very useful
during course of initialization of a new peer and when
a peer adjusts its confidants.

� Connection Proved. It is the reply of Connection.
When a peer receives a Connection request conveyed
by a mobile agent, it extracts its constraints from the
agent, and computes the similarity or relative impor-
tance between the requester and itself, or the relative
importance of the requester. If the computing results
satisfy its metrics, it accepts the application and replies
the requester with a Connection Proved.

� Query. It is the fundamental mechanism to realize file
searching and sharing. Along with it, mobile agent
carries the operational constraints, such as category of
query, key words, and so on. If the receiver holds the
answer to the query, it replies with a QueryHits.

� QueryHits. It is the reply of Query. Together with
QueryHits, agents carry relative information on the re-
ply, such as BPID and IP address of holders’ and the
query routing path. The former is used to satisfy the
current query, while the latter is used to enable the re-
cipient to optimize its ConfidantCircle.

3. Implementation Procedure

3.1 Initiation

After the PeerIS software is installed, it is firstly used
by the new peer to process the files it maintains, so that the
relative metadata are obtained. By now, the peer is an au-
tonomous information system, if it dose not join the PeerIS

network. The following process is taken by a peer to be-
come a participant of PeerIS:

1. The user should fill an application table, which re-
flects his/her favorites. Together with the metadata of
the files the peer maintains, the user registers with a
LIGLO with the above information, which is similar to
registering a mail server in the Internet environment.

2. The LIGLO server will issue the peer with a glob-
ally unique identifier, i.e, BPID, which takes form of
a (LIGLOID, NodeID) pair, where LIGLOID is the
IP address of the LIGLO server, while NodeID is the
unique ID for the peer assigned by the LIGLO. With
this structure, the BPID can serve to uniquely recog-
nize this peer regardless of its IP address changing.

3. At the same time, the LIGLO computes the similarity
between the applicant and some of the super nodes by
using their metadata. According to result, the LIGLO
recommends the applicant a list of appropriate super
nodes as the applicant’s confidant candidates.

4. The applicant peer’s Master agent clones several
Worker agents (who carry Connection request, meta-
data and the application table), and dispatches them
to each of the recommended super nodes (confidant
candidates). On receiving a Worker agent, the su-
per node, say ��, firstly makes sure that it has not
been visited by the agent and makes its TTL-1. Then,
�� computes their similarity, and decides whether to
receive it as a confidant. If the result is satisfac-
tory and �����	���� ' �����������, it replies
the applicant with a Connection Proved together with
the computing result to the applicant (say ��); Or if
�����	���� � �����������, the super node ��
would logically delete its least important confidant to
accept the request. Further, �� updates its Confidant-
Circle if �� issue �� an Active message in a predefined
period (for conforming). Else, if a super node regards
the applicant is not appropriate enough, it turns down
the Connection request and recommend the applicants
some other super node (if possible) if TTL(0. Indeed,
in order to guarantee a new peer to be able to bootstrap
itself successfully and rapidly, our mechanism offers a
higher priority to the applicant.

5. Since the Connection Proved messages from different
super nodes arrive at the applicant (say ��) at differ-
ent time, the applicant firstly stores them in its buffer
firstly. After a predefined period, it ranks their sim-
ilarity and chooses the best ones to be its confidants
and then sends an Active-Ok message to each of the
selected candidates. Then, the new peer builds up its

ConfidantCircle. By now, the initiation process is fin-
ished and the new peer has become a participant of the
PeerIS.

3.2 Maintenance

Because of the dynamic and ad hoc nature of peers, a
peer (say Pi) in the P2P network must continually maintains
its confidants, which covers the following aspects:

� Similarly to heartbeat, �� periodically issues an Ac-
tive message to each of the peers in its ConfidantCir-
cle (say �� ,) on the condition that �� does not receives
that from �� . If �� receives an Active Ok from �� then
�� regards �� is active, or there are three possible sit-
uations of its confidants (��), i.e., InActive, Active but
IP changed, and Active but confidant relation closed.
According to different situation, �� takes different ac-
tions. We delay the discussion in Subsection 3.3.

� Dealing with Connection requests, each active peer, es-
pecially super node will definitely confront the Con-
nection requests. In PeerIS, to solve the issue, the
active peer �� first compute their similarity of fa-
vorites and behavior or the relative importance of the
requester, and decides to accept the request and for-
wards to its confidants or just forwards to its appropri-
ates confidants or just drops it.

� If unfortunate, all of its confidants are not able to con-
nect, then Pi must issue the Connection requests to its
acquaintances according to its query history, or else, it
has to bootstrap itself with the help of its LIGLO.

3.3 Rejoining of Peer

A peer �� who has been a participant wants to rejoin
the PeerIS network after disconnection or failure, taking the
following process:

� Peer �� sends its current IP address to its LIGLO firstly
to allow its LIGLO to update its IP address if it has
changed;

� Secondly, it sends an Active message to each of peers
in its ConfidantCircle (say ��) to restore its connec-
tions with them. If �� receives an Active Ok message
from �� , then it restores their connection successfully.
Otherwise, with the help of LIGLO, �� should firstly
determine the status of the confidant, i.e., InActive,
Active but IP changed, and Active but confidant re-
lation closed, then it takes corresponding actions. For
the first situation, it just maintains �� in its Confidant-
Circle for a certain period, which is decided by ��’s
relative importance to it. For the second situation, � �

can track to �� ’s LIGLO and obtains ��’s current IP
address, so that it can restore their connection. For the
last situation, �� just reissues a Connection request to
�� , if �� receives a Connection Proved message, then
their confidant relationship is restored, else, � � can re-
place �� if it confronts appropriate peers.

� By now, peer Pi has finished its rejoining process.

4 Query Processing

4.1 Mechanism of Query Processing

In order to obtain the goal of approximate query and con-
tent granularity of sharing, the query processing in PeerIS
is supported by vector space model [12], which is also har-
monious with the mechanism of file classification described
above. In vector space model, the index terms in both
files and query are non-binary weights, which are ultimately
used to compute the similarity between files maintained by
peers and the submitted query. Furthermore, the retrieved
files are ranked in decreasing order of the degree of similar-
ity.

Definition 4.1 For the vector model, the weight ��	� as-
sociated with a &�

�)�� *�� is positive and non-binary,
where)� and *� are the
th index term and +th file re-
spectively. Further, the index terms in the query are also
weighted. Let ��	� be the weight associated &�

�)�� ,�
where �)�� ,� � �. Then the query vector �, is defined as
�, � ���	� � ��	� � ---� ��	�� where 	 is the total number index
term in the relative peers. As before, the file vector for the
file *� is presented by: �* � ���	� � ��	� � ---� ��	�� Thus, the
similarity between the , and *� can be computed by

�
��*� � ,� �
������

���� ������

�

��
���

����������
��

���
��
�	� �

�
��

���
��
�	�

Above, �*� and �, are the vector of file *� and query , re-

spectively, while
����*���� and ��,� are their norms. In order to

determine the weights in the above formula, we give out the
following definition and relative formulae.

Definition 4.2 Let � be the total number of files in a peer
and �� be the number of files where the index term)� ap-
pears. Let .
�,�	� be the raw frequency of term)� in the file
*� . Then the normalized frequency . �	� in file *� is given by

.�	� �
.
�,�	�

	
��.
�,�	�

Above, the	
��.
�,�	� stands for maximal value of the raw
frequency of all index terms, which are mentioned in the
text of file *� . If terms)� does not appear in file *� , then
.�	� � �. Further, let
*.� be the inverse file frequency of
)�, given by
*.� �
�� �

��
. Thus, a weight is given by,

��	� � .�	� �
*.� �
.
�,�	�

	
��.
�,�	�
�
��

�

��

4.2 Query Procedure

When a query is submitted, it is firstly parsed and clas-
sified by the requester peer, e.g., �� locally. Then it is pro-
cessed in a parallel manner, i.e., the query is processed lo-
cally as well as is conveyed by Query agents to relative con-
fidants or acquaintances, who have files sharing the same
category as the query. In practice, the process adopts a
two-phase strategy when a peer access remote peers (confi-
dants or acquaintances). In its first phase, QueryHits to the
query from remote peers are returned to requester firstly,
which are firstly ranked automatically and then selected by
users. In the second phrase, the results of first stage are
directed to the remote peers who hold the results and the
answers are finally returned. This strategy has two advan-
tages. First, it minimizes the information overload and bet-
ter utilizes the bandwidth of the network, since all Query-
Hits are selected semantically. Second, relative information
on the peers (e.g., the query path and hops, connection sta-
tus and behavior) that issue the QueryHits is returned to the
requester by Query agents to the Master agent, which are
helpful for the requester to reconfigure its ConfidantCircle,
so that the network can dynamically evolve. We detail both
local and remote query processing respectively.

1. Local Processing:

� The query is parsed firstly when submitted. Then
it is applied on the local dictionary in term of
its category and promising results are displayed
to the user immediately. Moreover, the results
are ranked by the Master agent according to their
�
��*� � ,�.

� At the same time, the Master agent clones Query
agents and dispatches them to all relative con-
fidants or acquaintances, which maintain files
whose category is the same as that of the query,
and they further forward the query to confidants’
confidants, and so on until TTL�0. Together
with the query, Query agents also convey (a) IP
address of the requester, and (b) TTL. The former
facilitates remote peers to directly return Query-
Hits to the requester, while the latter determine
the lifecycle of Query agents. During the course
of routing, they record the query paths.

� The Master agent waits for QueryHits from re-
mote peers. On receiving, it ranks and presents
them to the user for selection. At the same
time, all the statistics for reconfiguring are also
recorded. Then selected results are conveyed to
the holders at the beginning of the second phase.

� Once final answers are retrieved, the Query
agents are dropped.

2. Remote processing:

� The peer has not been visited previously, then
Query agent is accepted and reduce its TTL by
one.

� The Query agent searches against the Export
Dictionary of the remote peer, which is simi-
lar to local processing. And the results with
�
��*� � ,� � 	�
����/*, together with recon-
figuring information are directly returned to the
requester by the Query agents, which takes form
of QueryHits.

� If TTL (0, then the agent clones one or more
Query agents and dispatches them to relative con-
fidants, else, the agent is dropped.

Indeed, the two phrases are only logical, i.e., the proce-
dure of selection and retrieval is parallel and progressive,
which can reduce the user’s waiting time.

4.3 Evolution of System

One predominant feature of our mechanism is that it
facilitates peers in P2P systems to dynamically reconfig-
ure their ConfidantCircle, so that P2P systems can contin-
uously evolve. Periodically, each peer, say �
, evaluates
the relative importance of each peer (say ��) in its Con-
fidantCircle and each acquaintance (say ��) in its Confi-
dantCircle. For peer ��, if its �����	���� ' �������,
then it adds the most relative important acquaintances into
its ConfidantCircle until �����	���� � �����������;
Else, �� tries to replace its least important confidants
with the most important acquaintances on condition of
�
�� �� 	� ��� (�
�� �� 	� ��� . To do it,
�� firstly sends a Connection request to �� and if �� re-
ceives Connection Proved from ��, then �� build a con-
nection with �� and update its ConfidantCircle. And if ��
does not receive a Connection Proved form � � in a prede-
fined period, then �� regards it cannot make a connection
with �� . The procedure is described by pseudo-code in Al-
gorithm 1.

Algorithm 1: Evolving Algorithm for � �

begin
foreach peer in ��’s ���.
*��	�

0/�,
say �� , and each relative peer �� in ��’s
10,#�
�	��0��

0/� do

Compute �
�� �� 	� ��� and
�
�� �� 	� ��� ;
while Max(�
�� �� 	� ���)(
Min(�
�� �� 	� ���) do

if �����	���� ' ����������� then
add �� into ��’s ���.
*��	�

0/�

else
Replace �� with ��

Delete �� from 10,#�
�	��0��

0/�;

return Updated ���.
*��	�

0/�

end

5 Experiment Analysis

In this section, we report some of our experiment results.
Just as in [14], we also have carried out comprehensive ex-
periments and got promising results. Since their results are
very similar, in this paper, we just reports some results of
PeerIS vs. Gnutella, when the reconfiguration and approx-
imate search functionalities of PeerIS having been turned
off. Moreover. In addition, we also test how the query dis-
tribution affects the performance.

5.1 Experiment Setup

The experiment environment is made up of 32 PCs with
Intel Pentium 500MHz processor and 64M of RAM, and
all the PCs are running Windows 2000 operating system.
Among them, one serves as a LIGLO server and the other
31 PCs serve as peers. Every peer maintains 1,000 files and
each of the files is around 5KB. Further, 80% of the files that
a peer maintains belong to four specific categories and each
category randomly ranges from 10% through 50%, while
the rest 20% of files are randomly selected.

The experiments are conducted when the machines and
network are fully dedicated. Further, the topologies of both
PeerIS and Gnutella are randomly generated.

5.2 Experimental Results and Analyses

5.2.1 Comparison of Benefit-Cost of QueryHits

We first compare the Benefit-Cost of QueryHits in PeerIS
and Gnutella, which implies how much bandwidth a query
consumes to obtain a QueryHits. A randomly generated

Figure 2. Benefit-cost of QueryHits

query is submitted via a randomly selected peer (called base
peer) to search one file belonging to the four favorite cate-
gories. The execution has been repeated ten times and the
average results shown in the Figure 2.

In the figure, the base peers both systems have not got
any QueryHits when hops is zero, which implies all of their
replies are all obtained from remote peers, thus, they both
carry out local processing and remote processing during the
query processing. Further, the base peer in PeerIS obtains
more QueryHits than that of Gnutella when their queries
travel in small scope. Moreover, to obtain all answers,
the PeerIS’s base peer need only cover 3 hops while the
Gnutella’s base peer need cover 5 hops, because in PeerIS,
our automatic mechanism guarantees peers with similar fa-
vorites clustered closely, its peers can obtain the relative
replies in a smaller scope; while in Gnutella, confidants of
each peer is randomly selected, answers to a query are ran-
domly distributed among the network, a query has to tra-
verse the whole system to get all available answers; Since
our network just consists of 31 peers, they all can be cov-
ered within 5 hops.

5.3 Messages

The number of messages of a P2P system is determined
by its location and routing mechanism, which implies the
utility of bandwidth and further determines the scalability
of the system. During the above experiment, we have also
recorded the number of query messages at each hop in both
systems respectively and plotted in Figure 3.

As shown in the figure, the number of messages in both
systems is almost equivalent until the hops is around 3.
However, after that point, the number of messages increases
much faster in Guntella than in PeerIS. Since, in Gnutella,
when a peer requests a file, it forwards the query to all of
its confidants and its confidants relay the query to all their
confidants, and so on, until the TTL=0, so that the num-
ber of messages in Gnutella increases exponentially. Al-
though, the number of messages in PeerIS is almost the
same as in Gnutella at the first hops, the reason is different.
In PeerIS, peers with high similar favorites cluster closely

Figure 3. Bandwidth Consumption Compari-
son

and the nearer they are, the probability that they satisfy the
queries of each other’s is higher, so that the requester send
the request to almost all of its confidants. However, with
the hops increasing, the probability of acquaintances hav-
ing the answers to the query decreases, and the farther the
acquaintance is from the requester, the less probability it
has answers to the query. Thus, there are less acquaintances
needed to visit, as a consequence, the number of messages
increases more and more slowly.

5.4 Rate of Query Completion

The rate, at which queries complete and QueryHits are
turned, is one of the most important indexes of performance
of P2P systems. In this experiment, the completion rates
of different queries as well as returning rates of Query-
Hits to corresponding queries in both systems are compared.
Firstly, ten different randomly generated queries belonging
to favorites are submitted in both systems. And each query
is executed ten times, and the average results are plotted in
Figure 4(a).

As shown in Figure 4(a), the shapes of two curves are
much more different, which means the peers that hold an-
swers to queries are differently distributed in PeerIS and
Gnutella. Furthermore, as a whole, the completion time
of different queries in PeerIS is roughly the half of that in
Gnutella. It results from two reasons. The first is that al-
most all answers to a query are very near to the requester
in PeerIS, while, in Gnutella, the answers are randomly dis-
tributed. The second reason is that in PeerIS, all Query-
Hits are directly returned to the requester, while in Gnutella,
they are returned to the requester along the same path as the
query.

Secondly, the returning rates of QueryHits to each of cor-
responding query are also studied and the average rates are
plotted in Figure 4(b). As the above figure shown, all the
QueryHits in PeerIS are returned to the requester at higher
rates than those of the responding QueryHits in Gnutella.
Another subtle phenomenon is that most of the QueryHits

(a) The Completion Time of Different
Queries.

(b) Completion Time of QueryHits.

Figure 4. Completion Time Experiments.

are very near the requester, and some of them share the same
rate, which also reflects the distribution of a peer’s confi-
dants and acquaintances.

5.5 Distribution of Query

All of the queries in the previous experiments fall into
one of the four categories of the favorite files. In this experi-
ment, the effect of the distribution of queries is studied, i.e.,
some of the queries search for files of the four categories
while the rest search for the randomly selected files. The
experiment consists of seven groups of executions, and each
of which are made up of ten different individual queries. In
the first group, all the queries fall into the four categories
of favorite files, while in the second group, nine queries are
used to search the four categories of favorite files and the
rest is used to search for non-favorites, and so on. Each
query is run ten times and the average results are shown in
Figure 5.

Figure 5 shows how the different query distributions af-
fect the performance of different P2P systems. For PeerIS,
with the percentage of queries of searching sharing favorite
files decreasing, its performance deteriorates, while the per-
formance of Gnutella almost keeps the same. Furthermore,
when the percentage of queries searching “favorite” files
decreases at about 50%, Gnutella outperforms PeerIs. It
is because, in PeerIS, each peer just maintains those who

Figure 5. Compact of Query Distribution to
Performance

share the similar favorites as its confidants, so that peers in
PeerIS have less access to the “non-favorite” files; while in
Gnutella, each peer just randomly selects its confidants and
so do its confidants. Thus, its Performance is not sensitive
to the distribution of the queries. However, for PeerIS, this
situation can be alleviated by its evolution function.

6 Related Work

Three famous systems, i.e., Napster [7], Gnutella [4, 3]
and Freenet [2] are regarded as the inspiration of recent P2P
research and development. Pioneered by Napster, last two
years has seen an explosive growth in the use of file-sharing
software. This hybrid P2P system uses a centralized server
to maintain meta-information. By using a server to maintain
all the meta-information of files that are current available in
the overall system, resource locating in Napster is efficient.
However, since all locating operations need facilitating of
its server, there may exist a single point of failure as well
as scalability bottleneck. Gnutella is a fully distributed ver-
sion of file sharing where there is no central entity. Both
file-location and transfer are handled in a completely dis-
tributed manner. However, in order to locate a desired file,
queries flood the network with exponential messages. Fur-
thermore, all QueryHits and failure Messages are returned
to the requester along the original path, which leads to low
performance. Another obvious limitation of Gnutella is that
the confidants of a given peer are randomly and statically
defined, which hinders performance as well as the effective-
ness of resource utility. In Freenet, another fully distributed
file P2P system, a peer just forwards a query to one of con-
fidants, and QueryHits, together with the requested file is
returned to the requester along the same path as that of the
query. This location strategy is obvious inefficient. More-
over, in the worst cases, the requested file cannot be located
even if it actually exists. A common limitation of these three
systems is that they just support coarse granularity of shar-
ing with weak semantics. Fortunately, all the limitations of

these systems mentioned above are eliminated by our loca-
tion mechanism.

In the location and routing research field of P2P com-
puting, the most inspiring achievements should be Pastry
[1], CAN [10], Chord [13], and Tapestry [16]. All of the
systems support distributed hash functionality (DHT) [11].
In these systems, files are associated with a key (typically
produced by hashing the file name) and each peer in the
system is responsible for storing a certain range of the keys.
Because of their efficiency, several projects are built upon
them. However, this type of methods confronts many chal-
lenges. Besides thirteen open problems proposed by [11],
we note there are still following challenges. Firstly, this
strategy obviously ignores the autonomous nature of the
peers in P2P systems, which of course is against the main
idea of P2P. The second problem is that it just supports file
level searching and sharing with weak semantics. Last but
not the least, it also face the problems of hot spot and secu-
rity.

[9] proposes the metric of relative importance of con-
fidant, which is similar to our Benefit-Cost of QueryHits.
However, our metric of relative importance is more com-
prehensive, which includes not only Benefit-Cost of Query-
Hits, but also similarity of behavior, relative connection sta-
tus, and computing resources. Furthermore, our mechanism
has solved the problem of Group ID, which is the premise
of location mechanism, while [9] does not make any con-
tribution to it. In addition, [9] claims that its system is
implemented upon Gnutella, while when confronting the
isolation problem of a peer, it turns to a server, which is
a serious contradiction. In PeerIS, there is never the prob-
lem, since each peer not only has a list of acquaintances, but
also has LIGLO service. In addition, in [9], all QueryHits
are returned to the requester along the query path, while in
PeerIS, QueryHits are returned to the requester directly.

7. Conclusions

The grand vision of P2P computing is facing immense
technical challenges, one of which is how to locate desired
resources. However, recent achievements in this field have
many common limitations, e.g., just supporting weakly se-
mantic functions as well as ignoring autonomous nature
of P2P nodes. In this paper, we define the similarity de-
gree of favorites and behavior between peers, and relative
importance; as well as present their computing formulae.
Secondly, we propose a content-based location mechanism,
which can not only maintain the autonomous nature of peers
but also support approximate query and fine granularity of
content sharing. By employing strategy of file classifica-
tion, our mechanism can easily determine the similarity de-
gree of favorites between peers as well as predict the cate-
gory of future queries, and further guarantee the peers with

high similar favorites clustered closely, so that efficient lo-
cation can be achieved. Furthermore, a sophisticated tactic
in this mechanism facilitates the system to evolve dynam-
ically. Finally, we also have implemented our mechanism
in the PeerIS and tested it. The experiment results further
verify effectiveness of our mechanism At the same time, we
plan to extend this mechanism in two directions. Firstly, we
are about to extend our strategy to address the other two for-
mats of information, i.e., video and audio. Secondly, in the
depth direction, we will devise a suitable multicast routing
strategy supported by our location mechanism.

References

[1] P. Druschel and A. Rowstron. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In IFIP/ACM International conference on Distributed
systems platforms (Middle ware), pages 329–350, 2001.

[2] Freenet Home Page. http://freenet.sourceforge.com/.
[3] FURI Home Page. http://www.jps.net/williamw/furi.
[4] Gnutella Development Home Page.

http://gnutella.wego.com/.
[5] L. Gong. Peer-to-peer networks in action. In IEEE Internet

Computing Vol. 6, pages 37–39, 2002.
[6] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu.

What can databases do for peer-to-peer? In WebDB Work-
shop, 2001.

[7] Napster Home Page. http://www.napster.com/.
[8] W. S. Ng, B. C. Ooi, and K. L. Tan. Bestpeer: A self-

configurable peer-to-peer system. In International Confer-
ence on Data Engineering (ICDE) (Poster), 2002.

[9] M. K. Ramanathan, V. Kalogerakl, and J. Pruyne. Finding
good peers in peer-to-peer networks. In International Paral-
lel and Distributed Computing Symposium, 2002.

[10] S. Ratnasamy, R. Francis, M.Handley, R. Krap, J. Padye,
and S.Shenker. A scalable content-addressable network. In
ACM SIGCOMM, 2001.

[11] S. Ratnasamy, S. Shenker, and I. Stocia. Routing algorithm
for dhts: Some opern questions. In IPTPS, 2002.

[12] G. Salton and M.E.Lesk. Computer evaluation of indexing
and text processing. In Journal of the ACM, pages 8–36,
1968.

[13] I. Stocia, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In ACM SIGCOMM, 2001.

[14] The BestPeer Project Home Page.
http://xena1.ddns.comp.nus.edu.sg/p2p/.

[15] Y. Yang and X. Liu. A re-examination of text categorization
methods. In ACM SIGIR, 1999.

[16] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:
An infrastructure for fault-resilient wide-area location and
routing. In Technical Report UCB//CSD-01-1141, U. C.
Berkeley, 2001.

