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Abstract. Peer-to-peer (P2P) computing is the sharing of computer re-
sources, services and information by direct negotiation and exchange be-
tween autonomous and heterogeneous systems. An alternative approach
to distributed and parallel computing, known as Grid Computing, has
also emerged, with a similar intent of scaling the system performance and
availability by sharing resources. Like P2P computing, Grid Computing
has been popularized by the need for resource sharing and consequently,
it rides on existing underlying organizational structure. In this paper, we
compare P2P and Grid computing to highlight some of their differences.
We then examine the issues of P2P distributed data sharing systems, and
how database applications can ride on P2P technology. We use our Best-
Peer project, which is an on-going peer-based data management system,
as an example to illustrate what P2P computing can do for database
management.

1 Introduction

Peer-to-peer (P2P) technology, also called peer computing, is an emerging paradigm
that is now viewed as a potential technology that could re-architect distributed
architectures (e.g., the Internet). In a P2P distributed system, a large number of
nodes on the edge (e.g., PCs connected to the Internet) can potentially be pooled
together to share their resources, information and services. These nodes, which
can both consume as well as provide data and/or services, may join and leave the
P2P network at any time, resulting in a truly dynamic and ad-hoc environment.
The distributed nature of such a design provides exciting opportunities for new
killer applications to be developed.

The concept of P2P is not new. The pervasiveness of the Internet and the
publicity gained as a result of music-sharing have caused researchers and appli-
cation developers to realize the untapped resources, both in terms of computer
technology and information. Edge devices such as personal computers are con-
necting to each other directly, forming special interest groups and collaborating
to become a large search engine over information maintained locally, virtual clus-
ters and file systems. Indeed, over the last few years, we have seen many systems



being developed and deployed; e.g., Freenet [5], Gnutella [6], Napster [15], ICQ
[10], Seti@home [20] and LOCKSS [14].

The initial thrusts on the use of P2P platform were mainly social. Appli-
cations such as ICQ [10] and Napster [15], enable their users to create online
communities that are self-organizing, dynamic and yet collaborative. The em-
powerment of users, freedom of choice and ease of migration, form the main
driving force for the initial wide acceptance of P2P computing. To deploy P2P
in a business organization, the accesses and dynamism can be constrained as
data and resource sharing may be compartmentalized and restricted based on
the roles users play. While most researchers and businessmen realize the poten-
tial of P2P, it remains a difficult task to find a business model for exploiting
P2P fully. Consequently, various forms of P2P architectures have emerged and
will evolve and adapt over time to find a natural fit for different application do-
mains. One such success story is the deployment of the paradigm of edge-services
in content search, where it has been exploited in pushing data closer to the users
for faster delivery and solving the network and server bottle-neck problems.

From database perspective, most of these P2P systems are limited in several
ways. First, they provide only file level sharing (i.e., sharing of the entirety of
a file) and lack object/data management capabilities and support for content-
based search. Second, they are limited in extensibility and flexibility. As such,
there is no easy and rapid ways to extend their applications quickly to fulfill
new users needs. Third, a node’s peers are typically statically defined, without
taking system and network traffic into consideration. The limitations are due to
the lack of database’s richness in semantics and relationships, and adaptability
based on data size and access patterns.

Fueled by the need for sharing remote resources and datasets, and pooling
computing resources for large-scale resource intensive data analysis, Grid Com-
puting [3, 4] has concurrently emerged as an alternative approach to distributed
and parallel computing. Like P2P computing, Grid technology exploits shared
resources and rides on existing underlying organizational structure. While they
are similar in philosophy, they differ in several ways. In the next section, we pro-
vide some comparison between P2P and Grid computing, and argue that while
Grid computing will continue to play an important role in specialized applica-
tions, the P2P technology has its own merits and offers more research challenges
in view of the scale and unstability of the network. In the Section 3, we examine
the issues of P2P distributed data sharing systems, and how database applica-
tions can ride on P2P technology. In Section 4, we present our BestPeer [16]
project and its features, which is an on-going peer-based data management sys-
tem, as an illustration of what P2P computing can do for database management.
We conclude in Section 5.

2 P2P vs Grid Computing

An alternative approach known as Grid Computing to distributed and paral-
lel computing has also emerged, with a similar intent of scaling the system



performance and availability by sharing resources. Like P2P computing, Grid
Computing has been popularized by the need for resource sharing and conse-
quently, it rides on existing underlying organizational structure. However, there
are differences that distinguish the two as of today.

First, the grid network involves higher-end resources as compared to edge
level devices in the P2P network. While the former requires large amount of
money to be pumped in, the latter can tap into existing resources that are idling
and hence require less upfront cost commitment.

Second, the participants in the Grid network are organizations which agree in
good faith to share resources with a good degree of trust, accountability and com-
mon understanding; membership can be rather exclusive and hence the number
of participants is usually not large. The common platform for sharing is usually
clusters that have been demonstrated to be cost effective to super-computing,
and together they provide an enormous amount of aggregated computing re-
sources. In contrast, the participants of the P2P network are mainly end-users
and the platform of sharing is mainly individual Personal Computer (PC). How-
ever, due to the mass appeal, the network grows in a much faster rate and
may scale up to thousands of nodes. Because of the loose integration, it is more
difficult and critical to manage trust, accountability and security.

Third, the Grid network is very much well structured and stable. As a result,
resource discovery is less of an issue. On the contrary, P2P network is very
unstable - nodes can join and leave the network anytime. This complicates the
design of resource discovery mechanisms. Nodes that leave the network may
mean some directories may be temporarily “unavailable”.

Fourth, Grid computing can exploit traditional distributed query processing
techniques and ensure that answers are complete. In contrast, nodes in the P2P
network containing data may not be connected at the time of query, answers are
likely to be incomplete.

Finally, computational grids are largely set up in anticipation of resource
intensive applications, e.g. BioGrid for bioinformatics. However, to date, there
has been no reported successful story. On the other hand, “killer” applications
have surfaced in P2P naturally. For example, the Napster [15] MP3 music file
sharing applications served over 20 million users by mid-2000 before it was finally
shut down. As another example, the SETThome [20] program has accumulated
over 500,000 years of CPU time through more than 2 million users!

In summary, we believe Grid computing will continue to play an important
role in specialized applications, although architecturely, Grid computing could be
considered a special case of P2P computing, where each participating node has
a larger capacity and collaboration is more constrained and organized. Notwith-
standing, we believe P2P technology is more “user friendly” in the sense that it
allows users (particularly those at the edges) to share their resources and infor-
mation easily and freely. P2P also offers more research challenges in view of the
scale and unstability of the network.



3 How Has P2P Been Used For Databases?

While database technologies are mature, P2P promises the power of autonomous
and distributed resource sharing. Though these two have their different research
focus, researchers are now trying to seek out possible ways to integrate the two
to leverage on their respective strengths. We shall review some of these efforts
here.

[7] is the first paper that discusses data management issues in P2P environ-
ment from a database research perspective. Its focus, however, is largely on what
database technologies can do for P2P applications. Though a preliminary archi-
tecture for peer data management (Piazza) is described in [7], little is discussed
about how peers cooperate. Different from [7], PeerOLAP [11] sought to address
the problem in a different way - it looks at what P2P technologies can do for
database applications. Essentially, PeerOLAP is still a client/server system, how-
ever, the cooperation among clients (peers) is explored: all data within clients is
shared together.

In a P2P system, each peer maintains its data independently. In order to sup-
port semantically meaningful search, some kind of understanding among peers
is required. In PeerDB[18,17], we adopted IR-based approach to mediate peer
schemas with the help of a global thesaurus. In [19], a data model(LRM) is
designed for P2P systems with domain relations and coordination formulas to
describe relationships between two peer databases. Data Mapping [13] is a sim-
plified implementation of this model.

Due to the autonomy of the peer nodes and the databases each maintains,
data integration naturally becomes an important research area. However, unlike
traditional data integration systems, where a global schema is assumed with a
few data sources, a P2P system cannot simply assume a global schema, due to
its high dynamicity and large number of data sources. Nevertheless, it may be
possible to compose mediators, having some mediators defined in terms of other
mediators and data sources, thus achieving system extensibility. This is the main
thrust of [8] and [12]. While [8] focuses on how queries are reformulated with
views, [12] focuses on selective view expansion as opposed to full view expansion
which may be prohibitively expensive.

4 Peer-Based Data Management in The BestPeer Project

The BestPeer project started in 1999, and an extensible P2P platform, the Best-
Peer platform, was developed fully in Java [16]. We have built several applica-
tions on top of the BestPeer platform, including BuddyWeb, PeerOLAP, PeerIS,
PeerCQ and PeerDB. We shall focus here on the PeerDB system that is a proto-
type P2P application that provides database capabilities. This system has been
developed at the National University of Singapore in collaboration with Fudan
University, and is being enhanced with more features and applications.

PeerDB [17] is an instance of DBMS application over the BestPeer platform.
The concept behind PeerDB is similar to the analogy of publishing personal web



sites, except that it is now applied to personal databases. Unlike personal web
sites which are usually hosted together in a central web server, personal databases
are stored in the person’s own PC. In addition, it is increasingly common for
people to keep their data in common personal DBMS like MySql, and MSAccess.
Therefore, a PeerDB node allows an user to index and publish his/her personal
database for other peers to query.

4.1 The PeerDB Network

In the PeerDB network, there are two types of entities: a large number of nodes
(PeerDB nodes), and a relatively fewer number of location independent global
names lookup (LIGLO) servers. Each participating node runs the PeerDB (Java-
based) software that enables it to communicate or share resources with any other
nodes in the PeerDB network, thus realizing a P2P distributed data management
and sharing environment. Each node is essentially a data management system
and retains its autonomy: it determines its degree of participation - which rela-
tions to share with other nodes, amount of resources to share, and access control.

A LIGLO server is a “super” peer with fixed IP address, and is used to
uniquely recognize nodes whose IP addresses may change frequently. Thus, a
node’s peer whose IP address may be different at different time remain uniquely
recognizable. To avoid the server from being a bottleneck, we adopted a dis-
tributed approach where several LIGLO servers exist in the PeerDB network to
cater to the nodes.

Like existing P2P systems, each PeerDB node maintains addresses of a set
of nodes that it can directly reached. We shall refer to these nodes as neighbors
or directly connected peers of the node. Each PeerDB node also maintains meta-
data of objects/services provided by its neighbors. If a request can be satisfied
locally at a node, it is done; if it can be satisfied by some of its neighbors, it
is routed to them; otherwise, the request is routed to all neighbors, which in
turn may route it to their neighbors, and so on. Answers, however, are returned
directly to the node that initiates the query without passing through the search
path.

PeerDB exploits BestPeer’s ability to reconfigure the network to keep promis-
ing peers in close proximity based on some criterion. Currently, PeerDB supports
the following reconfiguration policies, the last strategy is newly designed:

1. MaxCount. MaxCount maximizes the number of objects a node can obtain
from its directly connected peers. It works in two steps. First, the node sorts
the peers based on the number of answers (or bytes) they returned. Those
that return more answers are ranked higher, and ties are arbitrarily broken.
The assumption here is that a peer that returns more answer is likely to
be useful for future queries. Second, the k peers with the highest values are
retained as the k directly connected peers, where k is a system parameter
that can be set by a participating node.

2. MinHops. MinHops, implicitly exploits collaboration with peers by min-
imizing the number of Hops. It requires that peers piggyback with their



answers the value of Hops. This will indicate how far the peers are from
the initiator of the request. More importantly, this information provides an
indication on what one can access from one’s indirect peers. The rationale
is as follows: If one can get the answers through one’s not-too-distant peers
(with small Hops value), then it may not be necessary to keep those nodes
(that provide the answer) as one’s immediate peers; it is better to keep nodes
that are further away so that all answer can be obtained with the minimal
number of Hops. Thus, this policy simply orders peers based on the number
of Hops, and picks those with the larger Hops values as the immediate peers.
In the event of ties, the one with the larger number of answer is preferred.

3. TempLoc. TempLoc is a temporal locality based strategy that favors nodes
that have most recently provided answers. It uses the notion of stack dis-
tance to measure the temporal locality. The idea works as follow. Consider a
stack that stores all the peers that return results. For each peer that returns
answers, move the peer to the top of the stack, and push the existing peers
down. The temporal locality of a peer is thus determined by its depth in the
stack. The top k peers in the stack are retained as the k directly connected
peers, where k is a system parameter that can be set by the node.

4.2 Architecture of PeerDB

Figure 1 illustrates the internals of a PeerDB node. There are essentially four
components that are loosely integrated. The first component is a data manage-
ment system that facilitates storage, manipulation and retrieval of the data at
the node. We note that the interface of the data management system is essen-
tially an SQL query facility. Thus, the system can be used on its own as a stand
alone DBMS outside of PeerDB.

For each relation that is created (through the PeerDB interface), the asso-
ciated meta-data (schema, keywords, etc) are stored in a Local Dictionary.
There is also an Export Dictionary that reflects the meta-data of objects that
are sharable to other nodes. Thus, only objects that are exported can be accessed
by other nodes in the network. We note that the meta-data associated with the
Export Dictionary is a subset of those found in the Local Dictionary, and the
distinction here is a logical one.

The second component is a database agent system called DBAgent. DBAgent
provides the environment for mobile agents to operate on. Each PeerDB node
has a master agent that manages the query of the user. In particular, it will
clone and dispatch worker agents to neighboring nodes, receive answers and
present them to the user. It also monitors the statistics and manages the network
reconfiguration policies.

The third component is a cache manager. We are dealing with caching remote
meta-data and data in secondary storage, and the cache manager determines the
caching and replacement policies.

The last component is the user interface. This provides a user-friendly en-
vironment for user to submit their queries, to maintain their sharable objects,
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Fig. 1. PeerDB node architecture

and to insert/delete objects. In particular, users search for data using SQL-like
queries.

4.3 Key Features of PeerDB

PeerDB has two main distinguishing features. First, it allows users to query data
in a SQL-like interface without knowing the schema of data in other nodes. To
address this issue, we adopt an Information Retrieval (IR) based approach. For
each relation that is created by the user, meta-data are maintained for each rela-
tion name and attributes. These are essentially keywords/descriptions provided
by the users upon creation of the table, and serve as a kind of synonymous names.
DBAgents are sent out to the peers to find out potential matches and bring the
corresponding meta-data back. By matching keywords from the meta-data of
the relations, PeerDB is able to locate relations that are potentially similar to
the query relations.

Second, in PeerDB, we adopt a two-phase agent-assisted query processing
strategy. In the first phase, the relation matching strategy (as described in the
first feature) is applied to locate potential relations. These relations (meta-data,
database name, and location) are then returned to the query node for two pur-
poses. One, it allows user to select the more relevant relations. This is to minimize
information overload when data may be syntactically the same (having the same
keywords) but semantically different. That is, different schemas are mediated.
Moreover, this can minimize transmitting data that are not useful to the user,
and hence better utilizes the network bandwidth. Two, it allows the node to up-
date its statistics to facilitate future search process. Phase two begins after the
user has selected the desired relations. In phase two, the queries will be directed
to the nodes containing the selected relations, and the answers are finally re-
turned (and cached). The two phases are completely assisted by agents. In fact,
it is the agents that are sent out to the peers, and it is the agent that interacts
with the DBMS. Moreover, a query may be rewritten into another form by the
DBAgent (e.g., a query on a single relation may be rewritten into a join query
involving multiple relations).
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4.4 Security in PeerDB

Due to the security risks posed by such a potentially powerful platform, PeerDB
has also been enhanced to provide a secure access to a node’s computing re-
sources and databases. Recall that each node comprises two types of data, pri-
vate data and sharable data. Nodes can only access data that are sharable. This
is enforced by a security policy that restricts applications to user-specified loca-
tions established during platform initialization. Figure 2 shows the interface to
realize this. Communications between nodes have also been provided with 128
bit encryption to protect the sensitive data from being eavesdropped and viewed
as they travel through the BestPeer network.

4.5 Implementation of PeerDB

PeerDB is fully implemented in Java. In our current implementation, we use
MySQL as the underlying database management systems. Users need to enter
keywords/descriptions and the columns of the table when they want to share
the table to others. An example is shown in in Figure 3. In the figure, the table
studentcourses has keywords student and course. Similarly, the attribute
CourseID has keywords course code and course number.

The metadata is very useful as the incoming agent would determine whether
the table is relevant to the query according to it. Our agent could also carry the
relevant metadata from the query originating host to destination host to compare
the similarity of the two metadata, and bring the set of possible relevant results
back. Once the results arrive at the query originating host, the user would need
to select the one he/she believe is relevant to his query, and perform the query.

Users will also need to maintain the relationship among those shared tables.
i.e, they need to specify which tables can be joined and on what attributes. This
is to facilitate better accuracy and more results. When an agent reaches the host,
it not only searches for single tables, but also checks whether those “joinable”
tables could be relevant to the query.
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When a user submits a query to our system, we will first check whether there
is any cached information about the relevant tables. If yes, we will query those
tables first. Our system will dispatch the agent to find more tables if the user is
not satisfied with the number of results.

PeerDB maintains two thresholds input by the users, threshold1 and thresh-
old2, to help find relevant tables. Our agent will carry the two thresholds with
it; and when it arrives at a particular node, it will ask for the metadata of all
the shared tables. For each shared table, it will then compute the similarity,
sim1, between the two tables using the two set of metadata. If the sim1 is larger
than thresholdl, it will indicate the table as potentially relevant. It also com-
putes the similarity, sim2, between the original metadata and the metadata of
the “joinable table”. If sim2 is larger than threshold2 and the sum of sim1 and
sim2 is larger than thresholdl, it will also indicate the joined table as potentially
relevant. Note that in searching for relevant “joinable tables”, thresholdl is for
improving accuracy and threshold2 is for improving efficiency. The keywords for
table name is assigned a higher weight.

After the computation, it will bring the metadata of those potential relevant
tables to the query originating host. When the result is returned back, the user
would need to indicate which table is relevant to his query and perform the
query. The system automatically constructs a new query and directly sends the
query to the destination node without dispatching the agent. We note that the
reconstructed query may replace the names of the attributes and/or drop some
attributes that are not relevant to the original query. PeerDB currently supports
queries that join relations from multiple nodes. The user could also choose to save
the metadata of the relevant tables (in the form of view), so that a subsequent
search on the same tables do not require any agents to be dispatched. The view



can then be propagated to other peers and maintained based on the statistics
on how often it is being used.

Figure 4 shows the PeerDB query interfaces - the first figure shows the query
interface; the second figure shows a sample where the user specifies that Table
Students and Table Courses (both tables are results from the relation matching
strategies) should be joined on the field Students.courseID and Courses.courselD;
and the last figure displays the answer tuples from a selected relation.

4.6 Joining Tuples based on ‘Contents’

Query-by-keywords is the standard information retrieval mechanism to search for
text documents. Recently, keyword search has also been proposed for searching
centralized relational databases( eg. DBXplore [1], Discover[9] and BANKS|2]).
In general, it is technically very challenging to query a database using keywords
due to the semantics of keywords. In PeerDB, an on-going work is to provide
keyword search in a peer-based data management system setting. Unlike central-
ized systems, the key challenges are the autonomy of peers, the lack of a global
schema and the dynamics of the peer connectivity. To this end, we introduce the
notion of peer-to-peer join that combines tuples from relations that contain cer-
tain keywords in the query. Compared to SQL queries, which can be only posed
according to peers’ local schema, keyword-based queries efface differences among
peers to some extent, providing an integrated interface for the users. In addition,
it is worthwhile to note that keyword-based queries in our system are answered
in a semantically meaningful way, which is quite different from IR experiences.

Each peer maintains its data in a relational database. When a query is pro-
cessed, the peer will search its database and return tuples that may include all or
subsets of keywords in the query. Our focus is not on how keywords are searched
in local relational databases, but on how partial and incomplete information
from different peers can be combined and integrated. Within each peer, local
keyword searching is an indispensable and important component.

Peer-to-Peer Join is a join operation that combines two (or more) relations
from two (or more) peers based on the semantics of keywords and syntax of join
operation of relational database systems. Each relation either contains at least
one unique keyword in the query or acts as a connector that is necessary for
joining other relations, but includes no query keywords by itself. To facilitate
efficient peer-to-peer join processing, various network reconfiguration and query
processing strategies are designed. Hueristics are formulated to select peers to
improve the ‘completeness’ of the answer while returning the answer as quickly
as possible to the user.

5 Conclusion

In this paper, we have relooked at P2P technology, and compare it against grid
computing. We believe that P2P technology offers interesting research problems.
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We also presented how P2P technology has been applied to support data man-
agement, and described our current on-going work on building a peer-based data
management system.
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