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Abstract

In this paper, we present the design and evaluation
of CQ-Buddy, a peer-to-peer (p2p) continuous
query (CQ) processing system that is distributed,
and highly-scalable. CQ-Buddy exploits the dif-
ferences in capabilities (processing and memory)
of peers and load-balances the tasks across pow-
erful and weak peers. Our main contributions are
as follows: First, CQ-Buddy introduces the notion
of pervasive continuous queries to tackle the fre-
quent disconnected problems common in a peer-
to-peer environment. Second, CQ-Buddy allows
for inter-sharing and intra-sharing in the process-
ing of continuous queries amongst peers. Third,
CQ-Buddy peers perform query-centric load bal-
ancing for overloaded data source providers by
acting as proxies. We have conducted extensive
studies to evaluate CQ-Buddy’s performance. Our
results show that CQ-Buddy is highly scalable,
and is able to process continuous queries in an ef-
fective and efficient manner.

1 Introduction

Peer-to-Peer (P2P) technology, also called peer computing,
is emerging as a new paradigm that is now viewed as a
potential technology that could re-architect distributed ar-
chitectures. In a P2P distributed system, a large number of
nodes (e.g., PCs connected to the Internet) can potentially
be pooled together to share their resources, information and
services. The nodes, which can be both a data consumer
and provider, may join and leave the P2P network at any
time, resulting in a truly dynamic and ad-hoc environment.
Furthermore, the nodes could have idle resources (process-
ing and memory) which can be exploited by other nodes in
a secured manner to help process a portion of a distributed
task.

Continuous queries are queries that are executed for a
potentially long period of time, and are used in the mon-
itoring of data semantics in the underlying data streams
to trigger user-defined actions. Continuous queries trans-
form a passive networked structure into an active environ-
ment, and are particularly useful in distributed environ-
ments where huge volumes of information are updated fre-
quently and remotely. For example, users may be interested
in monitoring the trading volume or price of a particular
stock over a period of time. They could then express their
request in a continuous query as follows:

Monitor the Singapore Stock Exchange indefintiely,
notify me when Straits Time Index
current value > 1300

Figure 1: Example of a CQ query.

In the literature on continuous queries, much of the ex-
isting work focuses on efficiently handling the processing
of a large number of continuous queries by exploiting sim-
ilarity in the queries, and subsuming a new incoming query
into existing queries groups [1]. These existing techniques,
however, are not expected to perform well in a highly dis-
tributed environment for several reasons. First, these tech-
niques were designed mainly based on a centralized client-
server architecture. Queries are routed and registered to
a single continuous query system (CQS). Thus, much of
the existing work focuses on supporting as many queries
as possible against external data sources. However, it is
clear that there is a limit to the number of queries that
can be handled by a single server, no matter how efficient
the CQS may be. Second, most of these techniques focus
on the data stream consumer (i.e. the system processing
the continuous queries), and neglect that the data providers
themselves could be potential bottlenecks. A popular data
provider may be easily overwhelmed by requests and con-
sequentially delay the response of a CQS. Third, multiple
continuous query systems do not share computations, and
each function autonomously and is concerned with the effi-
cient and effecti! ve execution of continuous queries within



itself. Multiple CQSs also do not share any query process-
ing task. In short, much of the work performed by indi-
vidual CQSs is duplicated. Futhermore, resources at some
CQSs could be under-utilized. For example, a large num-
ber of CQSs may be accessing the same data provider, thus
overloading the data provider and causing it to become a
bottleneck.

In this paper, we present the design and evaluation of
CQ-Buddy, a peer-to-peer (p2p) continuous query (CQ)
processing system that is distributed and highly-scalable.
CQ-Buddy exploits the differences in capabilities (pro-
cessing and memory) of peers and load-balances the tasks
across powerful and weak peers. Furthermore, CQ-Buddy
introduces the notion of pervasive continuous queries, to
allow complex continuous queries to be processed by other
buddy peers when a peer gets disconnected. Second, CQ-
Buddy allows for inter-sharing and intra-sharing in the
processing of continuous queries amongst peers. In CQ-
Buddy, intra-sharing of queries is achieved by grouping
similar queries and processing them within the continu-
ous query mechanism of the node, whereas inter-sharing
is achieved when multiple CQ-Buddies help one another
by processing continuous queries in a distributed manner.
Third, we note that data providers may be overwhelemed
with queries, and may become a bottleneck.CQ-Buddy
peers help to alleviate overloaded data providers by per-
forming query-centric load balancing for overloaded data
source providers by acting as proxies.

The rest of this paper is organized as follows. In the
next section, we discuss how peers can be harnessed for
continuous query processing. We discuss issues that are
prevalent when applying P2P to the domain of continuous
query processing, and we present solutions. Section 3 pro-
vides a formal model for identifying similarities between
queries. Section 4 gives an overview of the design and fea-
tures of CQ-Buddy. In Section 5, we present an extensive
experimental study to evaluate CQ-Buddy. In Section 6, we
review related works, and finally, we conclude in Section 7
with directions for future work.

2 Towards P2P Continuous Query Process-
ing

In this section, we first provide scenarios on distributed
continuous query processing on multiple sites. Next, we
look at the features of P2P systems and provide examples
on how P2P technology can be used to process continuous
queries in a distributed manner. We also look at how peers
can help and complement each other in processing queries
and perform load balancing. This will also serve to moti-
vate the need for continuous query processing using P2P
technology. For this purpose, we shall refer to a node in the
distributed P2P network as a peer.

2.1 Duplicate Processing of Similar Queries

Most existing continuous query systems [17, 8, 1, 9, 18]
are designed to process continuous queries in an efficient

manner at a single-site. In a network where there is a large
number of computers (nodes), each CQS executing on each
computer would process continuous queries independently.
There is therefore a large possibility of duplicate process-
ing of continuous queries in a network.

However, if the multiple CQSs executing at various
peers could cooperate and “help” each other in process-
ing the queries, the amount of duplicate processing can
be significantly reduced, and thus improving overall sys-
tem responsiveness. The grouping of similar queries to
allow for sharing of computation has in fact been the fo-
cus of many CQSs. With increased opportunities for shar-
ing, query processing can be further optimized holistically
across all CQSs. Contrast this with a single CQS, where
there are relatievly lesser opportunities for similar queries.

2.2 Data Providers - Bottlenecks?

When a large number of peers access the same data source,
the data provider itself becomes a bottleneck. Most of the
existing work focuses on tackling adaptive query process-
ing at the CQS end, but not at the data provider end. How-
ever, the data providers themselves may be overloaded by
requests from multiple CQSs and hence their performance
suffers. In our model, we consider two different configura-
tions for data providers.

2.2.1 Data Provider with Multiple Nodes

In the first scenario, the data provider consists of multiple
nodes, with each node providing the same set of data. The
peers accessing the data providers are aware of the multi-
ple data providers, and uses a selection policy to determine
which data provider node would service a request. (Refer
to Section 4.3.4)

2.2.2 Peers as Proxies

In the second scenario, the data provider consists of a sin-
gle node. The node maintains a list of neighbouring peers
which it can delegate as proxy peers. Proxy peers fetch data
on behalf of other peers, which must otherwise access the
data provider node themselves. This cuts down the num-
ber of concurrent requests to the data provider node. As
the load of the data provider node reduces significantly, the
overall responsiveness of the system improves.
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Figure 2: Multiple peers accessing a popular data source.



Let us consider an example. In Figure 2, we have mu-
tiple peers each issuing continuous queries to a popular
data provider. The data provider node quickly becomes a
bottleneck, since it has to handle multiple query requests
from multiple peers and send individual responses to each
of them.

We conduct a simple experiment to validate this exam-
ple. In the first experiment, we create a total of 100 peers
(varies from 10 to 100). Each peer submits 50 queries on
runtime to a CQS. In the first set of experiment, there is a
single data provider node servicing the requests from the
multiple peers. The average response time of peers (see
Figure 3(a)) is recorded.

In the second experiment, we allow the data provider
node to delagate several proxy peers to service the requests.
Queries are submitted to these peers in a random manner.
Figure 3(b) shows that the response time improves signif-
icantly. Thus, we can observe that by introducing proxy
peers, we are able to improve the overall responsiveness of
the system.
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Figure 3: Experiment to show the advantages of introduc-
ing intermediate proxies

2.3 Resource Sharing Strategies

P2P technology facilitates the sharing of data and comput-
ing resources. Intuitively, if we can harness peers in a P2P
network to service continuous queries, there is immense
potential for enhancing the reliability and performance of
all the CQS pariticipating in the P2P network. Figure 4(a)
illustrates a scenario where several “selfish” peers do not
share the processing of continuous queries with their neigh-
bors, and choose to process them by themselves. Let us
now consider the scenario in Figure 4(b). Each peer does
not handle the entire CQ processing of its own query. In-
stead, it shares the processing workload with other peers
in its neighborhood. Intuitively, the workload can thus be
evenly distributed amongst the peers, instead of having sev-
eral single overloaded peers.

Furthermore, peers may not have equal resources. Peers
can be running on a variety of devices, ranging from a Per-
sonal Digital Assistants (PDA) to a laptop or a desktop.
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Figure 4: Peers’ relation.

The basic idea behind CQ-Buddy is to allow peers that are
weaker than its neighboring peers to seek help from buddy
peers in processing similar continuous queries.

2.4 Frequent Connection/Disconnection of Peers

Before leaving this section, let us look at an example
that motiviates the need for pervasiveness in continuous
queries.

Let us consider a business traveller, who wishes to per-
form a long running computation (based on a complex fi-
nancial model) on real-time updates of the NYSE Compos-
ite index. Furthermore, he needs the computed results upon
arrival at the destination. When the traveller boards the
plane, his PDA is disconnected from the network of peers.
However, prior to disconnecting, his peer software asks for
help from its buddy peers to perform the query. When he
arrives at his destination, he powers up his PDA and imme-
diately, the buddy peers provide him (rather his PDA) with
the computed results from the complex, long running func-
tion that has been applied to an underlying continuous data
stream (i.e. from the New York Stock Exchange).

We refer to this class of continuous queries that are pro-
cessed by a peer on behalf of another peer, and retrieved
at a later time period as pervasive continuous queries. It
is useful when a peer can leverage on other buddy peers to
process a long running processing during its absence from
the network.

3 A Formal Model for Similar Queries
In this section, we present a formal model for expressing
similar queries, and we make use of the model for detecting
similarities in CQ-Buddy. Table 1 provides the terms used
in the model.

Definition 1 Let us denote a selection predicate, predj ,
as Colj ◦j Xj where ◦j denotes an operation in the set
{≤,≥, �=,=}, Colj denotes a field name, Xj denotes a
constant expression, and 1 ≤ j ≤ n, where n is the number
of selection predicates specified in a single query. Then,
two selection predicates, pred1 and pred2 are similar if
and only if



Terms Description
PredSim(Q1, Q2) Similarity between two

predicates Q1, Q2

ProjSim(Q1, Q2) Similarity between two
project attributes Q1, Q2

DSSim(Q1, Q2) Similarity between two
specified data sources Q1, Q2

QuerySim(Q1, Q2) Similarity between two
queries Q1, Q2

Table 1: Terms of Reference

Col1 = Col2 and ◦1 = ◦2
We refer to the above definition as a strong similarity. In
addition, we also relax the constraints on ◦1 and ◦2. Two
selection have a weak similarity if and only if

Col1 = Col2

(Note: CQ-Buddy supports both weak and strong similar-
ity.)

Definition 2 A query Qi consists of a set of selection pred-
icates Si, a set of projection attributes Pi, and a set of data
sources Di. Let si denote the total number of unique se-
lection predicates specified in Si, di denote the number of
data sources referenced in Di, and pi denote the number of
projection attributes in Pi.

Definition 2.1 Given two queries, Q1 and Q2, the predi-
cate similarity between Q1 and Q2 is defined as:

PredSim(Q1, Q2) = s / max(s1, s2), where s is de-
fined as the number of predicates in S1 that are similar to
the predicates in S2

Example I: Given two queries Q1 and Q2 as follows:
Q1: select * from R where R.a = 5 and R.b = 3
Q2: select * from R where R.a = 3 and R.c = 2
and R.b = 4
PredSim(Q1, Q2) = 2 / 3

Example II: Given two queries Q1 and Q2 as follows:
Q1: select * from R where R.a = 5 and R.b = 3
Q2: select * from R where R.a = 3 and R.b = 4
PredSim(Q1, Q2) = 2 / 2 = 1

Definition 2.2 Given two queries, Q1 and Q2, the simi-
larity between the projections attributes in Q1 and Q2 is
defined as:

ProjSim(Q1, Q2) = p / max(p1,p2), where p is the
number of projection attributes in P1 that are the same as
the projection attributes in P2.

Definition 2.3 Given two queries, Q1 and Q2, the sim-
ilarity between the data sources in Q1 and Q2 is defined as:

DSSim(Q1, Q2) = d / max(d1,d2), where d is the
number of data sources in D1 that is the same as the data
sources in D2.

Definition 3 A query Qi, consists of a set of selection
predicates Si, a set of projection attributes Pi, and a set
of data sources Di. Given two queries, Q1 and Q2. The
query similarity between Q1 and Q2 is defined as:
QuerySim(Q1, Q2) = (PredSim(Q1, Q2) +
ProjSim(Q1, Q2) + DSSim(Q1, Q2))/3

When QuerySim(Q1, Q2) = 1, the queries are similar
to one another. When QuerySim(Q1, Q2) = 0, the queries
are not similar to one another.

When 0 < QuerySim(Q1, Q2) < 1, the queries are
potentially similar to one another and a system-defined
threshold should be used to decide whether to treat the two
queries as similar or dissimilar.

4 CQ-Buddy: A Distributed CQS Using Peer
Technology

In this section, we shall present CQ-Buddy, a peer-to-peer
(P2P) continuous query system. We shall first look at the
CQ-Buddy network and the architecture of a CQ-Buddy
node. For illustration, Figure 5 shows a CQ-Buddy net-
work with several heterogeneous peers, including a hand-
held device (Peer 1), laptop (Peer 6), PCs and a server-type
peer.

4.1 CQ-Buddy Network

Figure 5: Overview of CQ-Buddy Network.

CQ-Buddy is a P2P-enabled distributed CQS. In CQ-
Buddy, we distinguish between two different roles of peers.
First, peers can act as proxies to data providers and help
to reduce the number of concurrent requests to the data
provider nodes (e.g Peer 2 and 5 in Figure 5). Second,



each peer implements a continuous query system that co-
operatively interacts with other peers to process continuous
queries (e.g. Peer 3 to 6 in Figure 5).

Let us consider the case where a new query Q2 = se-
lect * from sti.stream where Stock.symbol =’Creative 50’ or
Stock.symbol = ’SIA’ is submitted to Peer 2. sti.stream re-
trieves the stock indexes from the Straits Time Index which
is provided by the Singapore Stock Exchange. All incom-
ing queries that are submitted by the user to a peer are
first optimized. If a query is similar to one of the existing
queries, it is subsumed into an existing query group.

If the query is not similar, the peer could either process
it by itself or ask another peer (ie CQ-Buddy) which is al-
ready processing a similar query to help. In the second
option, the peer sends a “help” message with the newly
arrived query to other peers to see whether they are al-
ready processing a similar query. This hypothetical model
is practical especially in a P2P environment, where some
peers are more reliable and stable than the others, e.g.,
workstations as compared to PDAs, and dedicated network
lines as compared to modem dial-ups. Stronger peers, with
more resources (i.e. processing and memory) help weaker
peer in processing continuous queries. Note that the objec-
tive is to locate peers which currently handle similar pro-
cesses (i.e., monitoring data source sti.stream with projec-
tion attributes Stock.symbol), so no exact match of projec-
tion attributes is necessary.

When Peer 2 sends a “help” message to other peers, it
has no advance knowledge of the number of peers that will
respond. Instead, it relies on a predefined threshold (e.g.,
stop when 2 peers return results or when timeout sets in).
In the case of an empty result, the query will be sent to
the original CQS, e.g., Peer 3 and Peer 5. A new process
will be created in the process pool of Peer 3 and Peer 5
since there are no similar queries that are currently running.
Note that although Peer 3 and Peer 5 can always process
the incoming query (either merge it into the existing local
process pool for similar queries, or create a new process
to handle it), that option will only be taken last in order to
avoid building up a single data source bottleneck.

When a peer receives a request, it may either handle the
query if it has similar queries running in its local process
pool, or drop the message otherwise. Msg X keeps on prop-
agating to neighboring peers and the live time is controlled
by TTL (Time-to-Live). TTL indicates the maximum num-
ber of hops the message can be passed on before it expires,
and this is used to avoid flooding the network. In order
to break potential message loops, each peer keeps a queue
of the recent messages and rejects the ones that have been
processed before. Peers which are able to handle the query
(i.e. able to merge the incoming query into their existing
process groups) will send an acknowledgement directly to
Peer 2 with its identity, BPID 1. Peer 2 keeps the BPIDs,
which may be used for further reference, e.g., to remove

1CQ-Buddy is built on top of BestPeer [11]. BPID is a global identity
used in BestPeer to uniquely identify different peers and their respective
location in the dynamic network.

the query.

4.2 Architecture of a CQ-Buddy Node

Let us consider the architecture of a CQ-Buddy node.
Figure 6 depicts the architecture of an autonomous peer in

Figure 6: Architecture of a peer.

CQ-Buddy. CQ-Buddy is an extension of the BestPeer plat-
form that provides low-level P2P facilities, e.g., communi-
cation, and search mechanism. The core of a peer in CQ-
Buddy is the CQ-Manager that accepts user queries through
a user interface and then invokes the underlying execution
engine. Each query is optimized by the Query/Group opti-
mizer, where it is integrated into a group of queries if it is
similar to them. An incoming query will first be optimized
internally with a peer. The queries or grouped queries that
cannot be subsumed into an exisiting query will then be
used as input for the P2P search engine to locate the other
peers that can handle the queries. Note that the Data Man-
ager module may not be operational in a peer, since it sim-
ply consumes data provided by the data provider and act as
an intermediate proxy for other peers if there is a need for
load balancing. The data manager in a peer monitors the
data sources (i.e. a flat file, DBMS or data streams from
devices in the network). Here, we assume that the data are
read-only, and that there is an implicit time attribute tagged
to all data. CQ-Manager invokes the execution engine to
evaluate the installed continuous queries. Second, the CQ-
Manager orchestrate the queries that are processed by other
peers, and handles the return of the results to the CQ-Buddy
GUI.

4.3 Optimization of CQ-Buddy

Let us now consider the features of CQ-Buddy, and how
it can exploits the differences in capabilities of peers and
load-balances the tasks across powerful and weak peers.

4.3.1 Strategies for Processing Similar Queries

When a peer receives a new continuous query for process-
ing, it first determines whether the continuous query is sim-
ilar to any of the queries running in its existing pool. The
similarity between a newly arrived continuous query and
all the running queries is computed. If the newly arrived
query is similar to one of the existing running queries, it
will be added onto the existing query. If the newly arrived



query is similar to none of the existing running queries, the
peer can choose from two strategies.

In the first strategy, which we refer to as SELF-HELP,
the peer initiates a new processing task to handle this new
query itself. In this manner, the peer behaves exactly like
a single CQS. In the second strategy, which we refer to as
BUDDY-HELP, the peer asks its buddy peers for “help” in
processing the query. The buddy peers then process the
query on behalf of the peer, and provide the peer with the
results of the continuous query. In Section 5, we perform an
extensive study on the effectiveness of these two proposed
strategies.

4.3.2 Support for Pervasive Queries

CQ-Buddy supports a novel class of continuous queries,
called pervasive CQ. A pervasive CQ issued by peer A
is evaluated by peer B and stored there to be retrieved by
peer A at a later time. This class of continuous queries are
particularly beneficial in the heterogeneous environment in
which peers operate. In the existing P2P contexts, all de-
vices (i.e. peers) may differ both in hardware and soft-
ware configurations, as well as computational capabilities
[2, 3, 10, 16]. For example, a mobile device such as a
PDA has limited computational power and memory com-
pared to a desktop machine. Clearly, a PDA has limited
functionality compared to a desktop machine. Pervasive
CQ leverages on this difference, relying on stronger peers
to compensate for the physical limitations of weaker peers.
It also allows peers to disconnect and rejoin the network
without any restriction, and without any loss to users in
terms of access to requested information. Consider an-
other query Q1 that is defined as Q1 = select computeFi-
nancialModel(real time indexes) from nyse.stream where
Stock.symbol =’MSN’ or Stock.symbol = ’ORA’ STORE
= 30 minutes. It is similar to Q2 but with the additional
parameter “STORE”. This indicates that Q1 is a pervasive
query, and is potentially long running due to the need to
perform a complex computation (i.e. due to the computeFi-
nancialModel function) and the buddy peer which handles
the query will help to store the result for 30 minutes. Peer 1
submits the pervasive query Q1 to Peer 2, and disconnects
from the P2P network after receiving an acknowledgment
from Peer 2 (denoted by dash line). Peer 2 handles the
query if it is a normal query in the manner as described
previously. However, Peer 1 will store the results for the
long running operation and return the results to Peer 1 when
Peer 1 reconnects to the P2P network. In a P2P network,
the frequent disconnection of peers to the network can in-
terrupt the processing of continuous query that may require
complex computation. CQ-Buddy solves this problem of
frequent disconnection of peers by introducing pervasive
CQ.

4.3.3 Query-Centric Load Balancing for Data
Providers

We consider that the main data provider (i.e. a peer in the
P2P network) may be overloaded with queries, and thus

performance suffers for all CQSs requesting data from the
data provider. Each query may request for a specific set of
attributes, or a specific range of data values. When there
are many queries requesting for a specific set of data val-
ues or attributes, we refer to this frequently requested data
collectively as a Hot Region.

In order to reduce the load on the data provider, the Hot
Region is a potential candidate for being delegated to an
intermediate proxy peer to handle the queries. This will
help offload the burden from the main data provider.

Each peer maintains a list, call Hot Region List of data
attributes that are often requested by the queries from the
various peers. A Hot Region List consists of a Hot Region,
Hot Count and a Window Count. The list is sorted in de-
scending order based on the value of Hot Count.

The Hot Region keeps track of the data attributes that
are hot. The Hot Count is a counter that keeps track of the
number of queries requesting for data attribute in the cor-
responding Hot Region. For each request to a Hot Region,
we increase Hot Count by 1. However, due to the long-
running nature of continuous queries, the effect of a Hot
Region may vary across time. Hence, past hotness of a re-
gion would influence its current hotness. In order to reduce
this effect, we consider dividing time into non-overlapping
windows. Within each window, we increase Window Count
by 1 if there is a request for the corresponding Hot Region.
At the end of the time interval for the window, we copy the
value of Window Count to Hot Count, and reset Window
Count to 0. An example of a Hot Region List is presented
in Table 2. The values a,b denotes data values, and c-e de-
notes a range of values which are requested by the queries.

Hot Region Hot Window
Count Count

a 15 1
b 13 5

c - e 14 10

Table 2: Example of a Hot Region List

When a data provider is overloaded, it will determine
from the Hot Region List, the regions to be delegated to
intermediate peers, which would then act as proxies to ser-
vice the request. The selection process is crucial to achiev-
ing effective load balancing for the data provider. Noting
that each peer may be different in terms of their resources
(i.e. processing and memory), only peers which are stable
and seldom disconnected from the CQ-Buddy network are
considered suitable nodes for delegation as a proxy peer to
help offload requests from a single data provider.

4.3.4 Adaptive Selection Policy

Let us consider the effectiveness of different selection poli-
cies used in selecting a peer to be used as an intermedi-
ate proxy. We consider the problem of selecting a peer
amongst a list of m peers, and delegating the peer as a proxy
peer.



Two naive solutions can be employed. First Random
policy, in which the probability for selecting any peer is
equal to 1/m. Second, Round Robin policy, which works
on a rotating basis where one peeri is selected and used
to process queries, and then moved to the back of the list;
the next peer1+i is selected and then moved to the end of
the list after it has done its job; and so on, until peerm is
selected. However, these policies do not take into consider-
ation giving preference to those peers with the least amount
of congestion or workload.

We propose a peer selection algorithm, called Adaptive-
L, based on a randomized resource allocation technique
called lottery scheduling [19] and taking into consideration
current load and the processing power of a peer prior to del-
egating it as a proxy peer to help offload the task of the data
provider. The Adaptive-L strategy is a variant of the lottery
scheduling technique. The main difference is that instead
of using tickets to be used in a lottery, we consider the use
of round trip time as a representative measure of the re-
sponsivenss of a peer. The pseudo code for the Adaptive-L
is presented in Algorithm 1.

Adaptive-L receives a candidate list ω =
(Ooid1 , Ooid2 , ..., Ooidl

) as its input. The peer which
offers to process the query is denoted as object Ooid in
the list ω. For each Ooid in ω, a short ping query will be
sent to it. The round-trip time for the ping query will be
τ will be captured (Ref:1). The round-trip time will then
be normalized to an internal scale and this will be used
to compute the ticket volume v(O) using the function τ
(Ref:2),

If the peer Ooid exists in the local cache, the new ticket
volume will be combined by getting the a verage value of
the new volume value and cache volume value.

Finally, generateToken step (Ref:3) is a random function
that generates a token in the range of the total sum of ticket
volume. This is used to determine the peer that will be
selected as a candidate to process the query.

5 A Performance Study
We have conducted detailed simulation to study the vari-
ous CQ-Buddy features discussed in the previous sections.
In this section, we present our extensive performance eval-
uation of CQ-Buddy. First, we show the benefits of CQ-
Buddy in allowing multiple CQSs in a P2P network to co-
operate and help each other. Second, we show how stronger
peers can help weaker peers process continuous queries.
Third, we consider the various proxy peer selection poli-
cies which can help a data provider reduce the number of
simultaneous requests being sent to it. Finally, we look at
the effects of the number of delegated peers on query re-
sponse time.

5.1 Experiment Parameters

Recall Definition 3, the similarity of two queries Q1 and
Q2 is defined by QuerySim(Q1, Q2) ∈ {0, 1}. In our ex-
periments, we introduce a parameter, called degree of over-
lap, which is denoted as α ∈ {0, 1}. The parameter α is the

Algorithm 1: Adaptive-L(ω)
Data : a candidate list ω =

(Ooid1 , Ooid2 , ..., Ooidl
) of response

peers whose are able to process the query.
Result : A selected Ooidx

object.
begin

nω ←− ∅, τ ←− 0
for i←− Ooidi

∈ ω do
1 τ = roundTrip(Ooidi

)
Let T (v,O) be a ticket with volume v for an
object O
Let v(O) be the ticket volume for the object
O
Let vc(O) be the ticket volume for the object
O that might be found in local cache

2 v(Ooidi
) = ticketV olume(τ)

if vc(Ooidi
) �= nil then

newV olume =
(v(Ooidi

) + vc(Ooidi
))/2

else
newV olume = v(Ooidi

)

nω[i]←− new T (newV olume,Ooidi
)

nω ←− sorted nω in ascending T.v order
aω ←− ∅, av ←− 0
foreach element e of the nω do

av ←− av ∪ e.v
aω[i] = new T (av, e.O)

3 token = generateToken(aω[last])
next←− 0
while token ≤ aω[next].v do next + +
return aω[next].O

end

probability value used to determine whether the incoming
queries are similar with existing queries in the local queries
pool. When α = 0, there is no overlap between the incom-
ing query and existing running queries, and all queries are
different. When α = 1, each incoming query is similar to
one of the running queries.

5.1.1 Data Sets

We run our experiments against two different data sets, R
and S. Relation R and S consists of 50,000 and 100,000
tuples respectively. We assume every join query in our ex-
periments is a one-to-one, (i.e., each tuple in one relation
finds a corresponding matching tuple in the other relation)
binary join. The size of each tuple is about 1K bytes and
the data values are uniformly distributed.

5.1.2 Queries

In our experiments, we use three types of queries to repre-
sent the possible queries that users may submit to a CQS.
We categorize queries into Simple Selection Query, Range
Selection Query and Join Query.



Simple Selection Query:
Example: Notify me when Intel
stock price changes

Range Selection Query:
Example: Notify me all the stocks

whose price changed more
than 5%

Join Query:
Example: Notify me of all stocks

and the company names
whose prices changed more
than 5%

Note: Assuming stock info and
company profile (i.e. name)
stored in different relation.

Simple Selection Query is a group of queries that have the
same expression signature on the equal selection predicate
on Identity. Range Selection Query is a group of queries
that have the same expression signature on range selection
predicate on Change Ratio. Join Query is a class of queries
that contain expression signature for both selection and join
operators. Selection operators are pushed down under join
operators.

5.2 CQ-Buddy vs. Independent CQS

In the first experiment, we compare the performance of ex-
isting CQSs with CQ-Buddy. Existing CQSs can gener-
ally be classified into two types. In the first type of CQSs,
queries are shared (grouped sharing)[1, 18] techniques. In
the second type of CQSs, queries are not shared [8]. We
refer to the former CQS type as GroupCQ and the lat-
ter as TraditionalCQ. In the experiment, we shall consider
GroupCQ, since the later is able to allow computation for
similar queries to be shared and is thus more efficient and
effective compared to TraditionalCQ.

(a) Independent CQS. (b) CQ-Buddy

Figure 7: Independent CQS vs CQ-Buddy

Each CQ peer consists of 10 basic queries, and another
query set consisting of 10 queries following the 80-20 rule
(i.e., 80% of the queries access a hot region representing
20% of the entire data stream) is introduced into the system

at runtime. Queries are submitted to the peers.
Similar to the case of a single CQS, a new query is

checked to determine whether it can be shared with one of
the basic queries. If the incoming queries cannot be shared,
they are processed separately from the existing queries. We
set the degree of overlap, for similar queries to be α = 0.4.
We vary the number of peers from 100 to 1000 peers.

In the GroupCQ case, we make use of several peers each
running a CQS, independent of each other. Peers in the
GroupCQ case do not interact with each other, and pro-
cess the continuous queries with no knowledge of the con-
tinuous query that are being processed in other CQSs. In
the CQ-Buddy case, peers help one another in processing
similar queries. We compare the performance of these two
cases.

We study the performance of GroupCQ and CQ-Buddy
using hree types of queries: Simple Selection Query, Range
Selection Query and Join Query. Figure 8 shows the re-
sults of the experiments. From Figure 8(a), we note that
GroupCQ performs slightly better than CQ-Buddy when
the number of peers is small (less than 250). This is due
to cost of passing message to explore which other peers
can process a similar query. However, when the number of
peers increases, it can be observed that CQ-Buddy outper-
forms GroupCQ. In Figure 8(b) and Figure 8(c), as the na-
ture of the operations get more complex (i.e. join queries),
the benefits of being able to cooperatively process similar
queries amongst peers become apparent.

It can be observed from Figure 8 (a)-(c) that when the
number of peers is small, the cost of message passing be-
tween CQ-Buddy peers dominates, and hence the perfor-
mance of CQ-Buddy suffers. However, in a large P2P net-
work, the number of peers participating is potentially large,
and hence substantial benefits can be reaped from being
able to cooperatively process queries.

We also studied the number of messages that are passed
between CQ-Buddy peers when processing join queries.
Table 3 shows the number of messages that are exchanged
between CQ-Buddy peers when identifying CQSs that can
help process a similar query. From Table 3, we note that
even though the number of messages that are exchanged
between CQ-Buddy peers is large, the average response
time for CQ-Buddy still outperforms GroupCQ by more
than 50%.

5.3 Weak and Strong Peers

In this experiment, we define a parameter θ, to specify the
resources (i.e. processing, resources) of a peer, ranging
from {1-10}, where 10 is the most powerful, and it is 10
times more resources than the 1.

For all the peers (total 1000 peers, each peer sends 10
queries on runtime), we divide them into a weak and a
strong group. We define weak as θ = {1− 4} , else strong
as θ = {5 − 10} So, for each peer belonging to the weak
group, we randomly select θ = {1 − 4}. Similarly, for
the strong peers, we randomly select θ from the range of
θ = {5− 10}.
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(a) Selection Queries
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(b) Range Queries
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(c) Join Queries

Figure 8: Traditional CQS vs CQ-Buddy for different
query types

We consider two scenarios depicted as CQS and BCQ
in Figure 9. In the first scenario, CQS, we assume that
each peer processes queries on its own, without help from
stronger peers. When CQS=10%, it means that 10% of
weak peers exist in the environment, and weak peers have
to perform continuous query processing on their own, with-
out any help from the strong peers. In the second scenario,
we consider the case where stronger CQ-Buddy peers

CQ Buddy Group CQ
Average Average

Number Total Response Total Response
of Peers Msgs Time (ms) Msgs Time (ms)
100 3585 123.93 0 287.72
200 5087 178.98 0 407.49
300 6754 182.72 0 664.82
400 8165 240.72 0 662.28
500 10228 286.81 0 1,249.63
600 11519 360.72 0 1,064.70
700 13094 416.96 0 1,260.41
800 14729 390.76 0 1,508.46
900 16303 449.95 0 1,659.94
1000 17922 502.16 0 2,087.11

Table 3: Comparison of messages during similar query ex-
ploration and average response time for GroupCQ and CQ-
Buddy

help weaker peers in processing similar queries. When
BCQ=10%, it means that there are 10% of weak peers, but
these peers are helped by strong peers.

In the experiment, we increase the percentage of weak
peers from 10% up to 50% to evaulaute the effect of strong
peers helping weak peers in a CQ-Buddy network. Figure
9 shows the performance improvement from the effects of
strong peers helping weak peers.

Figure 9: Strong peers helping weak peers

From Figure 9, we can observe that BCQ, where strong
peers help weaker peers, consistently outperforms CQS by
more than 50%. This is expected, as by noting the disparity
in resources available to each peer, substantial performance
can be achieved by allowing a more powerful peer to help
out in the processing.

5.4 Effect of Proxy Peers Selection Policies

In this experiment, we study the effectiveness of different
selection policies used in selecting a peer to be used as an
intermediate proxy. We consider the maximum latency on
each peer to be the time taken for all queries to be com-
pleted on a peer. The x-axis of the graphs in Figure 10 de-
notes the id for each peer that are delegated as proxy peers,



and the y-axis denotes the maximum latency for each peer.
We assume that in the P2P network, there are 1000 peers,
and each peer sends 10 queries to a single data provider.
In the first experiment, we assume that all peers that are
candidates for selection as proxy peers have the same pro-
cessing capability. In the second experiment, we consider
the case where the peers have varying processing capabili-
ties. In both experiments, we use the following strategies:
Random, Round Robin and Adaptive-L for selecting a peer
as an intermediate proxy.

From Figure 10(a), we can observe that when all peers
have the same processing capability, the various naive ap-
proaches (e.g. Round Robin, Random) are able to ensure
that the load (i.e. maximum latency) on each peer is ap-
proximately the same.

However, in a large P2P network, it is common that
peers have different processing capabilities. In the second
experiment, we consider the case where all the peers have
different processing capabilities, ranked from 1-10, where
1 is the weakest and 10 is the strongest. All the peers are
assigned the ranking randomly. From Figure 10(b), we can
see that the maximum latency for each peer fluctuates for
the Round Robin and Random policies. When Random
Policy is used, the maximum latency for the peer varies
from 2000ms (e.g. DSP ID=1) to 4200ms (e.g DSP ID=5).
Hence, it is obvious that the load is not evenly distributed
amongst the various peers.

However, when AdaptiveL strategy is used, the maxi-
mum latency varies from 2000ms to 3200ms for all peers.
We can observe from the experiment that the AdaptiveL
strategy is more effective in balancing the load by ensur-
ing an evenly distributed maximum latency amongst all the
peers.

5.5 Effect of Hot Region Delegation to Peers

In this experiment, we study the effect of the number of
peers(delegated as proxy peers to a data provider) on the
query response time. In the first experiment, we increase
the number of delegated proxy peers. The query response
time for three diffferent types of queries are then recorded.

From Figure 11(a), we can observe that as the number
of delegated proxy peers increases, the respone time for the
various types of queries is reduced. Intuitively, if we re-
duce the number of concurrent requests to a data provider
through the use of proxies (i.e. peers), we are able to
service more requests using the intermediate proxy peers.
However, due to diminishing returns, increasing the num-
ber of delegated proxy peers would not add any benefits
to the overall responsiveness of the system. This can be
observed in Figure 11(a), the line being flat after five dele-
gations.

In the second experiment, we fix the number of dele-
gated proxy peers at five, and increase the number of peers
accessing the fixed number of delegated peers. From Fig-
ure 11(b), we can observe that the query response time in-
creases when the number of peers increases. This is ex-
pected, since the fixed number of peers is now not able to
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(b) Load at nodes (unequal resources)

Figure 10: Effect of node selection policy on load at nodes
in a CQ-Buddy network

service so many query requests. Here, there is a need to
delegate more proxy peers in order to reduce the load at
each proxy peer and improve the overall responsiveness of
the system.

6 Related Works

Continuous queries are used extensively as a useful tool
for the monitoring of updated information. The concept
of continuous queries was first introduced by Terry et al.
[17] who implemented timer-based continuous queries over
append-only database. The approach is too restricted, i.e.,
it is confined to append-only systems and disallows dele-
tions and modifications. Hence it is not adaptable to dy-
namic environments such as those found in a distributed or
P2P context.

There has been considerable research done in continu-
ous queries processing. More recently, there are several CQ
systems developed or proposed for monitoring and deliver-
ing information on the Internet. OpenCQ [8] employs an
SQL like query language and runs on top of a distributed in-
formation mediation system that integrates heterogeneous
data sources. The NiagaraCQ system [1] and Xyleme sys-
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Figure 11: Effects of number of delgated peers on query
response time

tem allow the monitoring of XML documents found on the
web. In addition, both CACQ [9] and AdaptiveCQ [18]
take note of the need for adaptivity and propose techniques
based on the eddies mechanism to facilitate adaptive con-
tinuous query processing.

All the systems mentioned above are fundamentally dif-
ferent from CQ-Buddy in several ways. First, most of these
existing systems utilize a centralized approach in which the
server performs the processing and treat the clients as sim-
ply receiving and presenting the information to the end-
user. This is typical of a client-server approach.

The requirements of CQ-Buddy match the characteris-
tics of the P2P technology perfectly. In a pure P2P environ-
ment there are no global services, resource or schema con-
trol. P2P systems, like Napster [10], Gnutella [3] , ICQ [6]
and SETI@Home provide for content sharing, communi-

cation and sharing of computational power. An evaluation
of P2P systems can be found in [20]. These systems are
limited to transferring content at the object level and can-
not support the execution of complex queries across multi-
ple sources, nor use intermediate results in order to answer
consecutive queries.

Recently, the peer-to-peer (P2P) computing model has
been increasingly deployed for a wide variety of applica-
tions in the area of database management, including data
mining, replica placement, resource trading, data manage-
ment and file sharing [13, 14]. Piazza [4, 5] is the first
system to deal with database management issues in P2P
systems. It provides a scheme for the indexing of views,
mechanisms for distributing an index in P2P network and
the exploitation of materialized views. Bernstein et al. [15]
propose the Local Relational Model (LRM) to solve data
management issues in a P2P environment. Each peer in the
P2P network consists of a local relational database, with
a set of acquaintances that define the network topology.
For each acquaintance link, domain relations define trans-
lation rules between data items, and coordination formulas
define semantic dependencies between the two databases.
PeerDB [12] is a P2P-based system for distributed data
management and sharing. It supports share data without
a shared global schema by employing an Information Re-
trieval based approach. These systems focus mainly on
data placement and management problems, and are funda-
mentally different from CQ-Buddy, which focuses on data
stream optimization in the P2P network.

In addition, PeerOLAP [7] looks at P2P data maange-
ment issues in the context of OLAP. PeerOLAP acts as
a large distributed cache for OLAP results by exploiting
underutilized peers. When a query is issued, the initiat-
ing peer decomposes it into chunks, and broadcasts the re-
quest for the chunks in a similar fashion as Gnutella. How-
ever, unlike Gnutella, PeerOLAP employs a set of heuris-
tics in order to limit the number of peers that are accessed.
Missing chunks can be requested from the data warehouse.
PeerOLAP also supports adaptive reconfiguration of the
network structure, which results in reduced query costs.
The system maintains statistics for the most frequently ac-
cessed peers. Each peer, at regular intervals, reconsiders its
set of neighbors and stays connected to the most beneficial
ones.

CQ-Buddy builds on and extends BestPeer [11] for CQ
applications. Briefly, BestPeer is a generic P2P system de-
signed to serve as a platform to develop P2P applications
easily and efficiently. It has the following features: (i) it
employs mobile agents; (ii) it shares data at a finer granu-
larity as well as computational power; (iii) it can dynami-
cally reconfigure a BestPeer network so that a node is al-
ways directly connected to peers that provide the best ser-
vice; (iv) It employs a set of location-independent global
name lookup (LIGLO) servers to uniquely recognize nodes
whose IP addresses may change as a result of frequent dis-
connection and reconnection.



7 Conclusion
In this paper, we have presented a novel distributed system
that processes continuous queries using Peer-to-Peer tech-
nology, called CQ-Buddy. We have shown that CQ-Buddy
is able to provide significant performance gains by sharing
continuous queries with other peers in an efficient and ef-
fective manner. The system is fully distributed and highly
scalable as there is no single-point failure and single-source
bottleneck. The CQ-Buddy network is dynamic and it does
not require any specific network structure to be defined.
Peers in the CQ-Buddy network also turn their heterogene-
ity to their advantage, so that “weaker” peers such as PDAs
and other mobile devices are helped by “stronger” peers for
complex query processing.

As shown in the evaluation, CQ-Buddy achieves signif-
icant performance gains with respect to traditional CQ sys-
tems. This is accomplished by (i) Allowing inter-sharing
and intra-sharing in the processing of continuous queries
amongst peers. (ii) Performing query-centric load balanc-
ing for overloaded data source providers by allowing peers
to act as proxies. In addition, we also note that computa-
tions could be long-running and the frequent disconnectiv-
ity of a peer from the P2P network could pose a problem.
CQ-Buddy solves this by introducing pervasive continuous
queries, which allows peers to ask buddy peers for help
while it gets disconnected from the network, and return at
a later time to retrieve the results from the long running
computation.
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